Caveolae--an alternative endocytotic pathway for targeted drug delivery

Crit Rev Ther Drug Carrier Syst. 2004;21(2):67-95. doi: 10.1615/critrevtherdrugcarriersyst.v21.i2.10.


Caveolae are bottleshape-like invaginations of the plasma membrane. After internalization they are involved in endocytosis, transcytosis, potocytosis, and pinocytosis. Our recently expanded knowledge has made clear that various molecules and macromolecular complexes enter the cells after docking on caveolar receptors, before subsequent internalization of the caveolae. The internalization is initiated by the ligand receptor interaction. Folate, cholesterol, serum lipoproteins, and liposomes are among the most common examples. It is important to point out that, in contrast to the classic clathrin-dependent endocytosis, the caveolar internalization pathway seems to avoid the lysosomes. Internalized caveolae fuse with caveosomes, and the caveosomes deliver their contents into other subcellular (non-lysosomal) compartments. The bypass of the acidic and harmful milieu might be a major advantage for drug delivery via the caveolar pathway. Not all cell types have caveolae. Cells, where the Caveolin I protein is not expressed, do not develop caveolar invaginations. However, these cells have caveolar-equivalent plasma membrane domains, so-called "lipid rafts." Lipid rafts are assembled from the same lipid constituents and proteins as caveolae, but they are flat. Specific ligands may also dock on appropriate receptors of the raft domain. As a complication, certain types of ligand-covered raft receptors can migrate to clathrin-coated pits and get internalized via clathrin-coated vesicles. Nevertheless, suitable ligands or antibodies developed against proteins of the caveolar/raft domains may selectively direct the attached drug carrier to the less harmful caveolar/raft pathway. Thus, understanding of caveolar transport may help in the rational design of more effective drug carriers.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Antibodies / administration & dosage
  • Caveolae / metabolism*
  • Caveolae / physiology
  • Drug Delivery Systems*
  • Humans
  • Ligands
  • Membrane Lipids / metabolism
  • Pharmaceutical Preparations / administration & dosage*
  • Protein Transport
  • Proteins / immunology
  • Proteins / metabolism


  • Antibodies
  • Ligands
  • Membrane Lipids
  • Pharmaceutical Preparations
  • Proteins