Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul;66(1):161-8.
doi: 10.1124/mol.104.000075.

Dipole potential and head-group spacing are determinants for the membrane partitioning of pregnanolone

Affiliations

Dipole potential and head-group spacing are determinants for the membrane partitioning of pregnanolone

Juha-Matti I Alakoskela et al. Mol Pharmacol. 2004 Jul.

Abstract

The membrane interactions of pregnanolone, an intravenous general anesthetic steroid, were characterized using fluorescence spectroscopy and monolayer technique. di-8-ANEPPS [4-[2-[6-(dioctylamino)-2-naphthalenyl]ethenyl]-1-(3-sulfopropyl)-pyridinium], a membrane dipole potential (Psi)-sensitive probe, revealed pregnanolone to decrease Psi similarly as reported previously for other anesthetics. The decrement in Psi was approximately 16 and 10 mV in dipalmitoylphosphatidylcholine (DPPC) and DPPC/cholesterol (90:10, mol/mol) vesicles, respectively. Diphenylhexatriene anisotropy indicated pregnanolone to have a negligible effect on the acyl chain order. In contrast, substantial changes were observed for the fluorescent dye Prodan, thus suggesting pregnanolone to reside in the interfacial region of lipid bilayers. Langmuir balance studies indicated increased association of pregnanolone to DPPC monolayers containing cholesterol or 6-ketocholestanol at surface pressures pi > 20 mN/m as well as to monolayers of the unsaturated 1-palmitoyl-2-oleoylphosphatidylcholine. In the same surface pressure range, the addition of phloretin, which decreases Psi, reduced the penetration of pregnanolone into the monolayers. These results suggest that membrane partitioning of pregnanolone is influenced by the spacing of the phosphocholine head groups as well as by membrane dipole potential. The latter can be explained in terms of electrostatic dipole-dipole interactions between pregnanolone and the membrane lipids with their associated water molecules. Considering the universal nature of these interactions, they are likely to affect membrane partitioning of most, if not all, weakly amphiphilic drugs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources