Cerebellum-dependent learning: the role of multiple plasticity mechanisms
- PMID: 15217344
- DOI: 10.1146/annurev.neuro.27.070203.144238
Cerebellum-dependent learning: the role of multiple plasticity mechanisms
Abstract
The cerebellum is an evolutionarily conserved structure critical for motor learning in vertebrates. The model that has influenced much of the work in the field for the past 30 years suggests that motor learning is mediated by a single plasticity mechanism in the cerebellum: long-term depression (LTD) of parallel fiber synapses onto Purkinje cells. However, recent studies of simple behaviors such as the vestibulo-ocular reflex (VOR) indicate that multiple plasticity mechanisms contribute to cerebellum-dependent learning. Multiple plasticity mechanisms may provide the flexibility required to store memories over different timescales, regulate the dynamics of movement, and allow bidirectional changes in movement amplitude. These plasticity mechanisms must act in combination with appropriate information-coding strategies to equip motor-learning systems with the ability to express learning in correct contexts. Studies of the patterns of generalization of motor learning in the VOR provide insight about the coding of information in neurons at sites of plasticity. These principles emerging from studies of the VOR are consistent with results concerning more complex behaviors and thus may reflect general principles of cerebellar function.
Similar articles
-
Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation.Cerebellum. 2017 Aug;16(4):827-839. doi: 10.1007/s12311-017-0857-6. Cerebellum. 2017. PMID: 28444617
-
Neural recordings and behavioral observations in the monkey vestibulo-ocular reflex constrain the cellular mechanisms for cerebellum-dependent behavioral learning.J Physiol Paris. 1996;90(5-6):381-2. doi: 10.1016/s0928-4257(97)87923-5. J Physiol Paris. 1996. PMID: 9089517
-
Input minimization: a model of cerebellar learning without climbing fiber error signals.Neuroreport. 2001 Dec 4;12(17):3825-31. doi: 10.1097/00001756-200112040-00045. Neuroreport. 2001. PMID: 11726803
-
The cerebellum and VOR/OKR learning models.Trends Neurosci. 1992 Nov;15(11):445-53. doi: 10.1016/0166-2236(92)90008-v. Trends Neurosci. 1992. PMID: 1281352 Review.
-
Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses.Neuron. 2006 Oct 19;52(2):227-38. doi: 10.1016/j.neuron.2006.09.032. Neuron. 2006. PMID: 17046686 Review.
Cited by
-
Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomer-based artificial muscle.J R Soc Interface. 2016 Sep;13(122):20160547. doi: 10.1098/rsif.2016.0547. J R Soc Interface. 2016. PMID: 27655667 Free PMC article.
-
Plasticity within non-cerebellar pathways rapidly shapes motor performance in vivo.Nat Commun. 2016 May 9;7:11238. doi: 10.1038/ncomms11238. Nat Commun. 2016. PMID: 27157829 Free PMC article.
-
Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices.J Neurosci. 2013 Apr 10;33(15):6552-6. doi: 10.1523/JNEUROSCI.5521-12.2013. J Neurosci. 2013. PMID: 23575852 Free PMC article.
-
Distribution and Structure of Synapses on Medial Vestibular Nuclear Neurons Targeted by Cerebellar Flocculus Purkinje Cells and Vestibular Nerve in Mice: Light and Electron Microscopy Studies.PLoS One. 2016 Oct 6;11(10):e0164037. doi: 10.1371/journal.pone.0164037. eCollection 2016. PLoS One. 2016. PMID: 27711146 Free PMC article.
-
Assessments of prolonged effects of desflurane and sevoflurane on motor learning deficits in aged AppNL-G-F/NL-G-F mice.Mol Brain. 2022 Apr 7;15(1):32. doi: 10.1186/s13041-022-00910-1. Mol Brain. 2022. PMID: 35387663 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
