Unhairing effluents treated by an activated sludge system

J Hazard Mater. 2004 Aug 9;112(1-2):143-9. doi: 10.1016/j.jhazmat.2004.04.004.

Abstract

Leather tannery effluents are a source of severe environmental impacts. In particular, the unhairing stage, belonging to beamhouse processes, generates a significantly toxic, alkaline wastewater with high concentrations of organic matter, sulphides, suspended solids and salts. The objective of this work was to evaluate the biodegradability and toxicity of diluted unhairing wastewater after being treated by an activated sludge (AS) system. The biomass activity of the AS was also evaluated. The AS system was fed for 180 days with diluted unhairing effluent. The operation strategy increased the organic load rate (OLR) from 0.23 to 2.98 g COD/l per day while the HRT was variable until operation day 113, when the HRT was near 1.1 days. Results show that when the organic load rate was lower than 2 g COD/l per day, the biological oxygen demand (BOD5) efficiency was 99%, whereas the chemical oxygen demand (COD) was around 80%. The reactor operation was stable until 2 g COD/l per day. For higher values, the system was less efficient (COD and BOD5 removal rate lower than 40%) and the relation of food/micro-organisms (F/M) was higher than 0.15. Biomass evaluations through oxygen utilisation coefficients show that the specific oxygen uptake rate (SOUR) decreased from 1.11 to 0.083 g O2/g MLVSS per day, in the same way the endogenous oxygen coefficient decreased from 0.77 to 0.058 per day. The reduction of biomass activity (measured as oxygen respiration) could be attributable to the inorganic compound content (ammonia and chloride) in the unhairing effluent. Also, the bioassays with Daphnia magna and Daphnia pulex showed that with these compounds, only between 24 and 31% of the toxicity of the aerobic-treated effluent can be removed. On the other hand, ultrafiltration (UF) analysis indicated that a COD fraction is recalcitrant to the aerobic treatment, principally those above 10,000 Da (around 55% of total unhairing influent COD).

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biodegradation, Environmental
  • Industrial Waste / prevention & control*
  • Sewage / chemistry*
  • Tanning / methods*
  • Water Pollution, Chemical / prevention & control*

Substances

  • Industrial Waste
  • Sewage