Changes in polyphasic chlorophyll a fluorescence induction curve upon inhibition of donor or acceptor side of photosystem II in isolated thylakoids

Biochim Biophys Acta. 2004 Jul 9;1657(2-3):121-30. doi: 10.1016/j.bbabio.2004.04.008.

Abstract

The action of various inhibitors affecting the donor and acceptor sides of photosystem II (PSII) on the polyphasic rise of chlorophyll (Chl) fluorescence was studied in thylakoids isolated from pea leaves. Low concentrations of diuron and stigmatellin increased the magnitude of J-level of the Chl fluorescence rise. These concentrations barely affected electron transfer from PSII to PSI as revealed by the unchanged magnitude of the fast component (t(1/2) = 24 ms) of P700+ dark reduction. Higher concentrations of diuron and stigmatellin suppressed electron transport from PSII to PSI, which corresponded to the loss of thermal phase, the Chl fluorescence rise from J-level to the maximal, P-level. The effect of various concentrations of carbonylcyanide m-chlorophenylhydrazone (CCCP), which abolishes S-state cycle and binds at the plastoquinone site on QB, the secondary quinone acceptor PSII, on the Chl fluorescence rise was very similar to that of diuron and stigmatellin. Low concentrations of diuron, stigmatellin, or CCCP given on the background of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), which is shown to initiate the appearance of a distinct I-peak in the kinetics of Chl fluorescence rise measured in isolated thylakoids [BBA 1607 (2003) 91], increased J-step yield to I-step level and retarded Chl fluorescence rise from I-step to P-step. The increased J-step fluorescence rise caused by these three types of inhibitors is attributed to the suppression of the non-photochemical quenching of Chl fluorescence by [S2+ S3] states of the oxygen-evolving complex and oxidized P680, the primary donor of PSII reaction centers. In the contrary, the decreased fluorescence yield at P step (J-P, passing through I) is related to the persistence of a "plastoquinone"-type quenching owing to the limited availability of photochemically generated electron equivalents to reduce PQ pool in PSII centers where the S-state cycle of the donor side is modified by the inhibitor treatments.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chlorophyll / chemistry*
  • Chlorophyll A
  • Fluorescence*
  • Intracellular Membranes / metabolism
  • Kinetics
  • Photosystem II Protein Complex / metabolism*

Substances

  • Photosystem II Protein Complex
  • Chlorophyll
  • Chlorophyll A