Inhibition of phosphatidylinositol 3'-kinase induces preferentially killing of PTEN-null T leukemias through AKT pathway

Biochem Biophys Res Commun. 2004 Jul 30;320(3):932-8. doi: 10.1016/j.bbrc.2004.06.038.


We examined the functional role of the phosphatidylinositol 3'-kinase pathway in the growth and survival of cell lines of T-cell origin. Pharmacological inhibition of PI3'-kinase using LY294002 resulted in apoptosis of acute lymphoblastic T-cell leukemia (T-ALL) cell lines including CEM, Jurkat, and MOLT-4. On the other hand, the cutaneous T-cell lymphoma cell line HUT-78 was found to be refractory to LY294002- inducible apoptosis. Sensitivity or resistance to pharmacological inhibitors of PI3'-kinase correlated with tumor suppressor PTEN gene expression, as sensitive T-ALL cells do not express PTEN and have high level of activated AKT, in contrast to HUT-78 cells. Our data demonstrate that inhibition of PI3'-kinase results in dephosphorylation of AKT and partial inhibition of Bcl-xL expression in T-ALL cells, but not in HUT-78 cells. Interestingly, HUT-78 cells were also found to express higher levels of Bcl-xL protein as compared to T-ALL cells. Inhibition of PI3'-kinase also induces release of cytochrome c from mitochondria and activation of caspase-3 and PARP in all T-ALL cell lines tested, but not in HUT-78 cells. Taken altogether, our data demonstrate that the PI3'-kinase/AKT pathway plays a major role in the growth and survival of PTEN-null T-ALL cells, and identify this cascade as promising target for therapeutic intervention in acute T-cell leukemias.

MeSH terms

  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Chromones / pharmacology
  • Enzyme Inhibitors
  • Humans
  • Leukemia, T-Cell / enzymology*
  • Leukemia, T-Cell / pathology
  • Morpholines / pharmacology
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Phosphoinositide-3 Kinase Inhibitors
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma / enzymology*
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma / pathology
  • Protein Tyrosine Phosphatases / deficiency*
  • Protein-Serine-Threonine Kinases / metabolism*
  • Proto-Oncogene Proteins / metabolism*
  • Proto-Oncogene Proteins c-akt
  • Signal Transduction
  • Tumor Suppressor Proteins / metabolism


  • Chromones
  • Enzyme Inhibitors
  • Morpholines
  • Phosphoinositide-3 Kinase Inhibitors
  • Proto-Oncogene Proteins
  • Tumor Suppressor Proteins
  • 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one
  • AKT1 protein, human
  • Protein-Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • Protein Tyrosine Phosphatases