Summary Atercc1, the recently characterized Arabidopsis homologue of the Ercc1 (Rad10) protein, is a key component of nucleotide excision repair as part of a structure-specific endonuclease which cleaves 5' to UV photoproducts in DNA. This endonuclease also acts in removing overhanging non-homologous DNA 'tails' in synapsed recombination intermediates. We have previously demonstrated this recombination function of the Arabidopsis thaliana Xpf homologue, AtRad1p, and show here that recombination between plasmid DNA substrates containing non-homologous tails is specifically reduced 12-fold in atercc1 mutant plants compared with the wild type. Furthermore, using chromosomal tandem-repeat recombination substrates, we show that AtErcc1p is required for bleomycin induction of mitotic recombination in the chromosomal context. This work thus confirms both the specific and general recombination roles of the Atercc1 protein in recombination in Arabidopsis.