Enhanced expression of transforming growth factor beta 1 in the rat brain after a localized cerebral injury

Brain Res. 1992 Aug 7;587(2):216-25. doi: 10.1016/0006-8993(92)91000-5.

Abstract

It is becoming clear that transforming growth factor beta (TGF beta) may be a key factor regulating inflammatory and tissue specific wound responses. Because the formation of a glial-collagen scar at CNS lesion sites is thought to contribute to the pathology associated with penetrating CNS injuries, and because in the periphery TGF beta 1 stimulates fibroblast deposition of scar tissue, we used in situ hybridization and immunohistochemistry to investigate the effect of a defined cerebral lesion on the local expression of TGF beta 1. Induction of TGF beta 1 mRNA and protein is relatively diffuse in the neuropile around the margins of the lesion at 1, 2 and 3 days, but becomes localized to the region of the glial scar at 7 and 14 days. The signal intensity for TGF beta 1 mRNA and protein is maximal between 2 and 3 days and decreases between 7 and 14 days after lesion. The predominant cell types in the neuropile localizing TGF beta 1 mRNA and protein have the morphological characteristics of astrocytes, although macrophages are also detected. An induction of TGF beta 1 mRNA was also observed in endothelial cells of the meninges, hippocampal fissure and choroid plexus, at 2 and 3 days. However, this is dramatically reduced by 7 days and has disappeared by 14 days. These results suggest a role for TGF beta 1, not only in inflammation, but also in the tissue-specific glial scar formation that occurs in the CNS. Furthermore, they suggest a potential therapeutic use of TGF beta 1 antagonists in the CNS to help limit the pathogenesis associated with matrix deposition in the wound.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brain / metabolism*
  • Brain Injuries / metabolism*
  • Brain Injuries / pathology
  • Capillaries / metabolism
  • Corpus Callosum / metabolism
  • Immunoenzyme Techniques
  • Immunohistochemistry
  • Male
  • RNA, Messenger / biosynthesis
  • Rats
  • Rats, Inbred Strains
  • Transforming Growth Factor beta / biosynthesis*

Substances

  • RNA, Messenger
  • Transforming Growth Factor beta