Genome-scale expression profiling of Hutchinson-Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis

Aging Cell. 2004 Aug;3(4):235-43. doi: 10.1111/j.1474-9728.2004.00105.x.


Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease with widespread phenotypic features resembling premature aging. HGPS was recently shown to be caused by dominant mutations in the LMNA gene, resulting in the in-frame deletion of 50 amino acids near the carboxyl terminus of the encoded lamin A protein. Children with this disease typically succumb to myocardial infarction or stroke caused by severe atherosclerosis at an average age of 13 years. To elucidate further the molecular pathogenesis of this disease, we compared the gene expression patterns of three HGPS fibroblast cell strains heterozygous for the LMNA mutation with three normal, age-matched cell strains. We defined a set of 361 genes (1.1% of the approximately 33,000 genes analysed) that showed at least a 2-fold, statistically significant change. The most prominent categories encode transcription factors and extracellular matrix proteins, many of which are known to function in the tissues severely affected in HGPS. The most affected gene, MEOX2/GAX, is a homeobox transcription factor implicated as a negative regulator of mesodermal tissue proliferation. Thus, at the gene expression level, HGPS shows the hallmarks of a developmental disorder affecting mesodermal and mesenchymal cell lineages. The identification of a large number of genes implicated in atherosclerosis is especially valuable, because it provides clues to pathological processes that can now be investigated in HGPS patients or animal models.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Arteriosclerosis / complications
  • Arteriosclerosis / genetics*
  • Cell Line
  • Child
  • Down-Regulation / genetics
  • Extracellular Matrix / genetics
  • Female
  • Fibroblasts / metabolism
  • Gene Expression Profiling*
  • Gene Expression Regulation / genetics*
  • Genetic Predisposition to Disease / genetics
  • Heterozygote
  • Homeodomain Proteins / genetics
  • Humans
  • Lamin Type A / genetics
  • Male
  • Mesoderm / metabolism*
  • Mutation
  • Progeria / complications
  • Progeria / genetics*
  • Progeria / pathology
  • RNA / genetics
  • RNA / isolation & purification
  • RNA / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction
  • Transcription Factors / genetics
  • Up-Regulation / genetics


  • Homeodomain Proteins
  • Lamin Type A
  • MEOX2 protein, human
  • Transcription Factors
  • RNA