Phi 29 DNA polymerase active site. Mutants in conserved residues Tyr254 and Tyr390 are affected in dNTP binding

J Biol Chem. 1992 Sep 25;267(27):19427-34.


Phi 29 DNA polymerase shares with other alpha-like DNA polymerases several regions of amino acid similarity. Among them, the two conserved regions characterized by the amino acid motifs "D-NSLYP" and "K--NS(L/V)YG," regions 1 and 2a, respectively, according to Blanco et al. (Blanco, L., Bernad, A., Blasco, M. A. and Salas, M. (1991) Gene (Amst.) 100, 27-38) have been proposed to be part of the polymerization active site of alpha-like DNA polymerases. One phi 29 DNA polymerase mutant in residue Tyr254, located in conserved region 1, and two mutants in residue Tyr390, located in conserved region 2a, have been characterized. The three phi 29 DNA polymerase mutant proteins were affected in polymerization when Mg(2+)-dNTPs were used as substrate. However, when the substrate was Mn(2+)-dNTP, mutants behaved as the wild-type phi 29 DNA polymerase. Mutant Tyr254 to Phe (Y254F) was strongly affected in the protein-primed initiation step of phi 29 DNA replication showing a decreased affinity for Me(2+)-dATP, the initiating nucleotide. Furthermore, the analysis of the template-independent deoxynucleotidylation of the TP by Y254F mutant polymerase is consistent with a change in the relative affinity for dNTPs. On the other hand, mutants Y390F and Y390S were found to be hypersensitive to the dNTP analogs 2-(p-n-butylanilino)dATP and N2-(p-n-butyl-phenyl)dGTP. The results obtained indicate that residues Tyr254 and Tyr390 are involved, directly or indirectly, in Me(2+)-dNTP binding.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Bacillus
  • Bacteriophages / enzymology*
  • Binding Sites
  • DNA Replication
  • DNA-Directed DNA Polymerase / metabolism*
  • Deoxyribonucleotides / metabolism*
  • Magnesium / metabolism
  • Manganese / metabolism
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Structure-Activity Relationship
  • Templates, Genetic


  • Deoxyribonucleotides
  • Manganese
  • DNA-Directed DNA Polymerase
  • Magnesium