Proteomics of calcium-signaling components in plants

Phytochemistry. 2004 Jun;65(12):1745-76. doi: 10.1016/j.phytochem.2004.04.033.

Abstract

Calcium functions as a versatile messenger in mediating responses to hormones, biotic/abiotic stress signals and a variety of developmental cues in plants. The Ca(2+)-signaling circuit consists of three major "nodes"--generation of a Ca(2+)-signature in response to a signal, recognition of the signature by Ca2+ sensors and transduction of the signature message to targets that participate in producing signal-specific responses. Molecular genetic and protein-protein interaction approaches together with bioinformatic analysis of the Arabidopsis genome have resulted in identification of a large number of proteins at each "node"--approximately 80 at Ca2+ signature, approximately 400 sensors and approximately 200 targets--that form a myriad of Ca2+ signaling networks in a "mix and match" fashion. In parallel, biochemical, cell biological, genetic and transgenic approaches have unraveled functions and regulatory mechanisms of a few of these components. The emerging paradigm from these studies is that plants have many unique Ca2+ signaling proteins. The presence of a large number of proteins, including several families, at each "node" and potential interaction of several targets by a sensor or vice versa are likely to generate highly complex networks that regulate Ca(2+)-mediated processes. Therefore, there is a great demand for high-throughput technologies for identification of signaling networks in the "Ca(2+)-signaling-grid" and their roles in cellular processes. Here we discuss the current status of Ca2+ signaling components, their known functions and potential of emerging high-throughput genomic and proteomic technologies in unraveling complex Ca2+ circuitry.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / metabolism
  • Calcium Signaling*
  • Models, Biological
  • Plant Proteins / analysis
  • Plant Proteins / isolation & purification
  • Plants / metabolism*
  • Protein Binding
  • Proteome / analysis
  • Proteomics*
  • Signal Transduction

Substances

  • Plant Proteins
  • Proteome