Precision of spike trains in primate retinal ganglion cells

J Neurophysiol. 2004 Aug;92(2):780-9. doi: 10.1152/jn.01171.2003.


Recent studies have revealed striking precision in the spike trains of retinal ganglion cells in several species and suggested that this precision could be an important aspect of visual signaling. However, the precision of spike trains has not yet been described in primate retina. The spike time and count variability of parasol (magnocellular-projecting) retinal ganglion cells was examined in isolated macaque monkey retinas stimulated with repeated presentations of high contrast, spatially uniform intensity modulation. At the onset of clearly delineated periods of firing, retinal ganglion cells fired spikes time-locked to the stimulus with a variability across trials as low as 1 ms. Spike count variance across trials was much lower than the mean and sometimes approached the minimum variance possible with discrete counts, inconsistent with Poisson statistics expected from independently generated spikes. Spike time and count variability decreased systematically with stimulus strength. These findings were consistent with a model in which firing probability was determined by a stimulus-driven free firing rate modulated by a recovery function representing the action potential absolute and relative refractory period.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials
  • Animals
  • Computer Simulation
  • Macaca / physiology*
  • Models, Neurological
  • Photic Stimulation / methods
  • Refractory Period, Electrophysiological
  • Retinal Ganglion Cells / physiology*
  • Retinal Ganglion Cells / radiation effects