Integrated self-inactivating lentiviral vectors produce full-length genomic transcripts competent for encapsidation and integration

J Virol. 2004 Aug;78(16):8421-36. doi: 10.1128/JVI.78.16.8421-8436.2004.


To make human immunodeficiency virus type 1 (HIV-1)-based vectors safer for use in the research and clinical setting, a significant modification to the HIV-1 genome has been the deletion of promoter and enhancer elements from the U3 region of the long terminal repeat (LTR). Vectors containing this deletion are thought to have no LTR-directed transcription and are called self-inactivating (SIN) lentivectors. Using four distinct approaches, we show that SIN lentivectors continue to have promoter activity near the 5' LTR, which is responsible for the production of full-length vector transcripts. To verify that transcripts derived from the LTR in SIN lentivectors are competent for encapsidation and integration, we transduced a lentiviral packaging cell line with a SIN lentivector and then observed the production of viable vector particles containing full-length SIN lentivector genomes. We have also attempted to identify sequences in the SIN lentivector which are responsible for transcriptional activation at the 5' LTR. Using different segments of the vector LTR and leader region in a promoter assay, we have determined that the residual promoter activity is contained entirely within the leader region and that, although this element is downstream of the transcription initiation site, it is capable of initiating transcription from the 5' end of R in the LTR. Mutation of leader region binding sites for the transcriptional activators downstream binding factor 1 (DBF1) and SP1 reduces transcription from the SIN LTR by up to 80%. Knowledge of the potential for mobilization of HIV-1-derived SIN lentivectors will be important for the design of future gene therapy trials with such vectors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • Cell Line
  • Genetic Vectors*
  • Genome, Viral*
  • HIV Long Terminal Repeat / genetics*
  • HIV-1 / genetics
  • HIV-1 / metabolism*
  • Humans
  • Molecular Sequence Data
  • Promoter Regions, Genetic
  • Transcription, Genetic*
  • Transduction, Genetic
  • Virus Assembly
  • Virus Integration*