Neurons compute internal models of the physical laws of motion
- PMID: 15282606
- DOI: 10.1038/nature02754
Neurons compute internal models of the physical laws of motion
Abstract
A critical step in self-motion perception and spatial awareness is the integration of motion cues from multiple sensory organs that individually do not provide an accurate representation of the physical world. One of the best-studied sensory ambiguities is found in visual processing, and arises because of the inherent uncertainty in detecting the motion direction of an untextured contour moving within a small aperture. A similar sensory ambiguity arises in identifying the actual motion associated with linear accelerations sensed by the otolith organs in the inner ear. These internal linear accelerometers respond identically during translational motion (for example, running forward) and gravitational accelerations experienced as we reorient the head relative to gravity (that is, head tilt). Using new stimulus combinations, we identify here cerebellar and brainstem motion-sensitive neurons that compute a solution to the inertial motion detection problem. We show that the firing rates of these populations of neurons reflect the computations necessary to construct an internal model representation of the physical equations of motion.
Similar articles
-
Sensory convergence solves a motion ambiguity problem.Curr Biol. 2005 Sep 20;15(18):1657-62. doi: 10.1016/j.cub.2005.08.009. Curr Biol. 2005. PMID: 16169488
-
Sensory vestibular contributions to constructing internal models of self-motion.J Neural Eng. 2005 Sep;2(3):S164-79. doi: 10.1088/1741-2560/2/3/S02. Epub 2005 Aug 31. J Neural Eng. 2005. PMID: 16135882 Review.
-
Coordinate transformations and sensory integration in the detection of spatial orientation and self-motion: from models to experiments.Prog Brain Res. 2007;165:155-80. doi: 10.1016/S0079-6123(06)65010-3. Prog Brain Res. 2007. PMID: 17925245 Review.
-
An integrative neural network for detecting inertial motion and head orientation.J Neurophysiol. 2004 Aug;92(2):905-25. doi: 10.1152/jn.01234.2003. Epub 2004 Mar 31. J Neurophysiol. 2004. PMID: 15056677
-
Properties of cerebellar fastigial neurons during translation, rotation, and eye movements.J Neurophysiol. 2005 Feb;93(2):853-63. doi: 10.1152/jn.00879.2004. Epub 2004 Sep 15. J Neurophysiol. 2005. PMID: 15371498
Cited by
-
The otolith vermis: A systems neuroscience theory of the Nodulus and Uvula.Front Syst Neurosci. 2022 Sep 15;16:886284. doi: 10.3389/fnsys.2022.886284. eCollection 2022. Front Syst Neurosci. 2022. PMID: 36185824 Free PMC article.
-
Computation of egomotion in the macaque cerebellar vermis.Cerebellum. 2010 Jun;9(2):174-82. doi: 10.1007/s12311-009-0147-z. Cerebellum. 2010. PMID: 20012388 Free PMC article. Review.
-
Cerebellar Prediction of the Dynamic Sensory Consequences of Gravity.Curr Biol. 2019 Aug 19;29(16):2698-2710.e4. doi: 10.1016/j.cub.2019.07.006. Epub 2019 Aug 1. Curr Biol. 2019. PMID: 31378613 Free PMC article.
-
Differences between perception and eye movements during complex motions.J Vestib Res. 2011;21(4):193-208. doi: 10.3233/VES-2011-0416. J Vestib Res. 2011. PMID: 21846952 Free PMC article.
-
Eye-centered visual receptive fields in the ventral intraparietal area.J Neurophysiol. 2014 Jul 15;112(2):353-61. doi: 10.1152/jn.00057.2014. Epub 2014 Apr 30. J Neurophysiol. 2014. PMID: 24790176 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
