Activity of telithromycin and comparators against bacterial pathogens isolated from 1,336 patients with clinically diagnosed acute sinusitis

Ann Clin Microbiol Antimicrob. 2004 Aug 2;3:15. doi: 10.1186/1476-0711-3-15.

Abstract

Background: Increasing antimicrobial resistance among the key pathogens responsible for community-acquired respiratory tract infections has the potential to limit the effectiveness of antibiotics available to treat these infections. Since there are regional differences in the susceptibility patterns observed and treatment is frequently empirical, the selection of antibiotic therapy may be challenging. PROTEKT, a global, longitudinal multicentre surveillance study, tracks the activity of telithromycin and comparator antibacterial agents against key respiratory tract pathogens.

Methods: In this analysis, we examine the prevalence of antibacterial resistance in 1,336 bacterial pathogens, isolated from adult and paediatric patients clinically diagnosed with acute bacterial sinusitis (ABS).

Results and discussion: In total, 58.0%, 66.1%, and 55.8% of S. pneumoniae isolates were susceptible to penicillin, cefuroxime, and clarithromycin respectively. Combined macrolide resistance and reduced susceptibility to penicillin was present in 200/640 (31.3 %) of S. pneumoniae isolates (128 isolates were resistant to penicillin [MIC > or = 2 mg/L], 72 intermediate [MIC 0.12-1 mg/L]) while 99.5% and 95.5% of isolates were susceptible to telithromycin and amoxicillin-clavulanate, respectively. In total, 88.2%, 87.5%, 99.4%, 100%, and 100% of H. influenzae isolates were susceptible to ampicillin, clarithromycin, cefuroxime, telithromycin, and amoxicillin-clavulanate, respectively. In vitro, telithromycin demonstrated the highest activity against M. catarrhalis (MIC50 = 0.06 mg/L, MIC90 = 0.12 mg/L).

Conclusion: The high in vitro activity of against pathogens commonly isolated in ABS, together with a once daily dosing regimen and clinical efficacy with 5-day course of therapy, suggest that telithromycin may play a role in the empiric treatment of ABS.