Identifying athletes at risk of hamstring strains and how to protect them

Clin Exp Pharmacol Physiol. 2004 Aug;31(8):546-50. doi: 10.1111/j.1440-1681.2004.04028.x.


1. One common soft-tissue injury in sports involving sprinting and kicking a ball is the hamstring strain. Strain injuries often occur while the contracting muscle is lengthened, an eccentric contraction. We have proposed that the microscopic damage to muscle fibres that routinely occurs after a period of unaccustomed eccentric exercise can lead to a more severe strain injury. 2. An indicator of susceptibility for the damage from eccentric exercise is the optimum angle for torque. When this is at a short muscle length, the muscle is more prone to eccentric damage. It is known that subjects most at risk of a hamstring strain have a previous history of hamstring strains. By means of isokinetic dynamometry, we have measured the optimum angle for torque for nine athletes with a history of unilateral hamstring strains. We also measured optimum angles for 18 athletes with no previous history of strain injuries. It was found that mean optimum angle in the previously injured muscles was at a significantly shorter length than for the uninjured muscles of the other leg and for muscles of both legs in the uninjured group. This result suggests that previously injured muscles are more prone to eccentric damage and, therefore, according to our hypothesis, more prone to strain injuries than uninjured muscles. 3. After a period of unaccustomed eccentric exercise, if the exercise is repeated 1 week later, there is much less evidence of damage because the muscle has undergone an adaptation process that protects it against further damage. We propose that for athletes considered at risk of a hamstring strain, as indicated by the optimum angle for torque, a regular programme of mild eccentric exercise should be undertaken. This approach seems to work because evidence from a group of athletes who have implemented such a programme shows a significant reduction in the incidence of hamstring strains.

Publication types

  • Congress
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Athletic Injuries / pathology
  • Athletic Injuries / prevention & control*
  • Exercise / physiology
  • Humans
  • Muscle, Skeletal / pathology
  • Muscle, Skeletal / physiology*
  • Risk Factors
  • Sports / physiology*