Hill coefficient for estimating the magnitude of cooperativity in gating transitions of voltage-dependent ion channels
- PMID: 15298891
- PMCID: PMC1304492
- DOI: 10.1529/biophysj.104.040410
Hill coefficient for estimating the magnitude of cooperativity in gating transitions of voltage-dependent ion channels
Abstract
A frequently used measure for the extent of cooperativity in ligand binding by an allosteric protein is the Hill coefficient, obtained by fitting data of initial reaction velocity (or fractional binding saturation) as a function of substrate concentration to the Hill equation. Here, it is demonstrated that the simple two-state Boltzmann equation that is widely used to fit voltage-activation data of voltage-dependent ion channels is analogous to the Hill equation. A general empiric definition for a Hill coefficient (n(H)) for channel gating transitions that is analogous to the logarithmic potential sensitivity function of Almers is derived. This definition provides a novel framework for interpreting the meaning of the Hill coefficient. In considering three particular and simple gating schemes for a voltage-activated cation channel, the relation of the Hill coefficient to the magnitude and nature of cooperative interactions along the reaction coordinate of channel gating is demonstrated. A possible functional explanation for the low value of the Hill coefficient for gating transitions of the Shaker voltage-activated K(+) channel is suggested. The analogy between the Hill coefficients for ligand binding and for channel gating transitions further points to a unified conceptual framework in analyzing enzymes and channels behavior.
Figures
Similar articles
-
Computing transient gating charge movement of voltage-dependent ion channels.J Comput Neurosci. 2002 Mar-Apr;12(2):123-37. doi: 10.1023/a:1015712824133. J Comput Neurosci. 2002. PMID: 12053157
-
Emerging issues of connexin channels: biophysics fills the gap.Q Rev Biophys. 2001 Aug;34(3):325-472. doi: 10.1017/s0033583501003705. Q Rev Biophys. 2001. PMID: 11838236 Review.
-
Voltage-dependent gating in a "voltage sensor-less" ion channel.PLoS Biol. 2010 Feb 23;8(2):e1000315. doi: 10.1371/journal.pbio.1000315. PLoS Biol. 2010. PMID: 20208975 Free PMC article.
-
Equilibrium fluctuation relations for voltage coupling in membrane proteins.Biochim Biophys Acta. 2015 Nov;1848(11 Pt A):2985-97. doi: 10.1016/j.bbamem.2015.08.008. Epub 2015 Aug 17. Biochim Biophys Acta. 2015. PMID: 26290960 Free PMC article.
-
The voltage sensor in voltage-dependent ion channels.Physiol Rev. 2000 Apr;80(2):555-92. doi: 10.1152/physrev.2000.80.2.555. Physiol Rev. 2000. PMID: 10747201 Review.
Cited by
-
Purified F-ATP synthase forms a Ca2+-dependent high-conductance channel matching the mitochondrial permeability transition pore.Nat Commun. 2019 Sep 25;10(1):4341. doi: 10.1038/s41467-019-12331-1. Nat Commun. 2019. PMID: 31554800 Free PMC article.
-
The Hill analysis and co-ion-driven transporter kinetics.J Gen Physiol. 2015 Jun;145(6):565-74. doi: 10.1085/jgp.201411332. J Gen Physiol. 2015. PMID: 26009547 Free PMC article. Review.
-
Cooperativity Principles in Self-Assembled Nanomedicine.Chem Rev. 2018 Jun 13;118(11):5359-5391. doi: 10.1021/acs.chemrev.8b00195. Epub 2018 Apr 25. Chem Rev. 2018. PMID: 29693377 Free PMC article. Review.
-
A self-consistent approach for determining pairwise interactions that underlie channel activation.J Gen Physiol. 2014 Nov;144(5):441-55. doi: 10.1085/jgp.201411184. Epub 2014 Oct 13. J Gen Physiol. 2014. PMID: 25311637 Free PMC article.
-
An improved model for the rate-level functions of auditory-nerve fibers.J Neurosci. 2011 Oct 26;31(43):15424-37. doi: 10.1523/JNEUROSCI.1638-11.2011. J Neurosci. 2011. PMID: 22031889 Free PMC article.
References
-
- Adair, G. S., A. V. Bock, and H. Field, Jr. 1925. The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin. J. Biol. Chem. 63:529–545.
-
- Aggarwal, S. K., and R. MacKinnon. 1996. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron. 16:1169–1177. - PubMed
-
- Almers, W. 1978. Gating currents and charge movements in excitable membranes. Rev. Physiol. Biochem. Pharmacol. 82:96–190. - PubMed
-
- Bezanilla, F. 2000. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80:555–592. - PubMed
-
- Edelstein, S. J. 1971. Extensions of the allosteric model for haemoglobin. Nature. 230:224–227. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
