Role of CaMKII in hydrogen peroxide activation of ERK1/2, p38 MAPK, HSP27 and actin reorganization in endothelial cells

FEBS Lett. 2004 Aug 13;572(1-3):307-13. doi: 10.1016/j.febslet.2004.06.061.

Abstract

Growing evidence suggests that reactive oxygen species such as hydrogen peroxide (H(2)O(2)) can function as important signaling molecules in vascular cells. H(2)O(2)-activated redox-sensitive pathways mediate both physiological and pathological responses given the location and concentration of H(2)O(2). We showed previously for the first time that calcium/calmodulin-dependent protein kinase II (CaMKII) is redox-sensitive in endothelial cells, mediating H(2)O(2) upregulation of endothelial nitric oxide synthase. This response is always accompanied by an elongation phenotype of endothelial cells, implying modulation of actin cytoskeleton. In the present study, we investigated the role of CaMKII in H(2)O(2) activation of p38 MAPK/heat shock protein 27 (HSP27) pathway and ERK1/2, both of which have been known to regulate actin reorganization in endothelial cells. Addition of H(2)O(2) to bovine aortic endothelial cells increased ERK1/2 phosphorylation and activity, which was attenuated by a specific inhibitor of CaMKII, KN93. KN93 also prevented H(2)O(2) activation of p38 MAPK. Transfection of endothelial cells with a CaMKII-specific inhibitory peptide (AA 281-309) reduced H(2)O(2) phosphorylation of p38 MAPK and ERK1/2. Furthermore, blockade of CaMKII or janus kinase 2 (JAK2, downstream of CaMKII) prevented H(2)O(2) activation of HSP27. KN93 attenuated, whereas AG490 (JAK2 inhibitor) abolished, H(2)O(2)-induced formation of actin stress fibers. Blockade of ERK1/2 inhibited H(2)O(2) phosphorylation of HSP27 transiently. It also partially prevented H(2)O(2) induction of actin stress fibers. In summary, redox-sensitive activation of p38 MAPK/HSP27 pathway or ERK1/2 in endothelial cells requires CaMKII. These pathways are at least partially responsible for H(2)O(2) induced reorganization of actin cytoskeleton.

MeSH terms

  • Actins / metabolism*
  • Animals
  • Aorta
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinases / metabolism*
  • Cattle
  • Cells, Cultured
  • Endothelium, Vascular / drug effects
  • Endothelium, Vascular / enzymology
  • Endothelium, Vascular / metabolism*
  • Enzyme Activation
  • Hydrogen Peroxide / pharmacology*
  • Intracellular Signaling Peptides and Proteins
  • Mitogen-Activated Protein Kinase 1 / metabolism*
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases / metabolism*
  • Oxidation-Reduction
  • Protein-Serine-Threonine Kinases / metabolism*
  • p38 Mitogen-Activated Protein Kinases

Substances

  • Actins
  • Intracellular Signaling Peptides and Proteins
  • Hydrogen Peroxide
  • MAP-kinase-activated kinase 2
  • Protein-Serine-Threonine Kinases
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases