Self-assembly of amphiphilic dendritic dipeptides into helical pores

Nature. 2004 Aug 12;430(7001):764-8. doi: 10.1038/nature02770.

Abstract

Natural pore-forming proteins act as viral helical coats and transmembrane channels, exhibit antibacterial activity and are used in synthetic systems, such as for reversible encapsulation or stochastic sensing. These diverse functions are intimately linked to protein structure. The close link between protein structure and protein function makes the design of synthetic mimics a formidable challenge, given that structure formation needs to be carefully controlled on all hierarchy levels, in solution and in the bulk. In fact, with few exceptions, synthetic pore structures capable of assembling into periodically ordered assemblies that are stable in solution and in the solid state have not yet been realized. In the case of dendrimers, covalent and non-covalent coating and assembly of a range of different structures has only yielded closed columns. Here we describe a library of amphiphilic dendritic dipeptides that self-assemble in solution and in bulk through a complex recognition process into helical pores. We find that the molecular recognition and self-assembly process is sufficiently robust to tolerate a range of modifications to the amphiphile structure, while preliminary proton transport measurements establish that the pores are functional. We expect that this class of self-assembling dendrimers will allow the design of a variety of biologically inspired systems with functional properties arising from their porous structure.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biological Transport
  • Biopolymers / chemistry*
  • Biopolymers / metabolism*
  • Calorimetry, Differential Scanning
  • Circular Dichroism
  • Dipeptides / chemistry*
  • Dipeptides / metabolism*
  • Hydrogen Bonding
  • Magnetic Resonance Spectroscopy
  • Microscopy, Electron
  • Models, Molecular
  • Porosity
  • Protein Structure, Quaternary
  • Protons
  • Stereoisomerism

Substances

  • Biopolymers
  • Dipeptides
  • Protons