Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Sep;32(9):973-82.
doi: 10.1124/dmd.104.000125.

Substrate depletion approach for determining in vitro metabolic clearance: time dependencies in hepatocyte and microsomal incubations

Affiliations
Comparative Study

Substrate depletion approach for determining in vitro metabolic clearance: time dependencies in hepatocyte and microsomal incubations

Hannah M Jones et al. Drug Metab Dispos. 2004 Sep.

Erratum in

  • Drug Metab Dispos. 2004 Nov;32(11):1331

Abstract

The substrate depletion method is a popular approach used for the measurement of in vitro intrinsic clearance (CL(int)). However, the incubation conditions used in these studies can vary, the consequences of which have not been systematically explored. Initial substrate depletion incubations using rat microsomes and hepatocytes were performed for eight benzodiazepines: alprazolam, clobazam, clonazepam, chlordiazepoxide, diazepam, flunitrazepam, midazolam, and triazolam. Subsequent predictions of in vivo CL(int) (ranging from 3 to 200 ml/min) and hepatic clearance (CL(H)) (ranging from 0.3 to 15 ml/min) demonstrated that the general predictive ability of this approach was similar to that of the traditional metabolite formation method. A more detailed study of the substrate depletion profiles and CL(int) estimates indicated that the concentration of enzyme used is of particular importance. The metabolism of triazolam, clonazepam, and diazepam was monoexponential at all cell densities using hepatocytes; however, with microsomes, biphasic depletion was apparent, particularly at higher microsomal protein concentrations (2-5 mg/ml). Enzyme activity studies indicated that enzyme loss was more pronounced in the microsomal system (ranged from 8 to 65% activity after a 1-h incubation) compared with the hepatocyte system (approximately 100% activity after a 1-h incubation). For clonazepam (a low clearance substrate), these biphasic profiles could be explained by loss of enzyme activity. To ensure accurate predictions of in vivo CL(int) and CL(H) when using the substrate depletion approach, based on the results obtained for this class of drugs, it is recommended that low enzyme concentrations and short incubation times are used whenever possible.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources