Alpha-lipoic acid mitigates insulin resistance in Goto-Kakizaki rats

Horm Metab Res. 2004 Aug;36(8):542-9. doi: 10.1055/s-2004-825760.

Abstract

Impaired glucose uptake and metabolism by peripheral tissues is a common feature in both type I and type II diabetes mellitus. This phenomenon was examined in the context of oxidative stress and the early events within the insulin signalling pathway using soleus muscles derived from non-obese, insulin-resistant type II diabetic Goto-Kakizaki (GK) rats, a well-known genetic rat model for human type II diabetes. Insulin-stimulated glucose transport was impaired in soleus muscle from GK rats. Oxidative and non-oxidative glucose disposal pathways represented by glucose oxidation and glycogen synthesis in soleus muscles of GK rats appear to be resistant to the action of insulin when compared to their corresponding control values. These diabetes-related abnormalities in glucose disposal were associated with a marked diminution in the insulin-mediated enhancement of protein kinase B (Akt/PKB) and insulin receptor substrate-1 (IRS-1)-associated phosphatidylinostol 3-kinase (PI 3-kinase) activities; these two kinases are key elements in the insulin signalling pathway. Moreover, heightened state of oxidative stress, as indicated by protein bound carbonyl content, was evident in soleus muscle of GK diabetic rats. Chronic administration of the hydrophobic/hydrophilic antioxidant alpha -lipoic-acid (ALA, 100 mg/kg, i.p.) partly ameliorated the diabetes-related deficit in glucose metabolism, protein oxidation as well as the activation by insulin of the various steps of the insulin signalling pathway, including the enzymes Akt/PKB and PI-3 kinase. Overall, the current investigation illuminates the concept that oxidative stress may indeed be involved in the pathogenesis of certain types of insulin resistance. It also harmonizes with the notion of including potent antioxidants such as ALA in the armamentarium of antidiabetic therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antioxidants / pharmacology*
  • Biological Transport / drug effects
  • Diabetes Mellitus, Type 2 / genetics
  • Diabetes Mellitus, Type 2 / metabolism
  • Diabetes Mellitus, Type 2 / physiopathology*
  • Glucose / metabolism
  • Insulin / pharmacology
  • Insulin Resistance*
  • Male
  • Muscle, Skeletal / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism
  • Protein Serine-Threonine Kinases / metabolism
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins c-akt
  • Rats
  • Rats, Inbred Strains / genetics
  • Rats, Wistar
  • Thioctic Acid / pharmacology*

Substances

  • Antioxidants
  • Insulin
  • Proto-Oncogene Proteins
  • Thioctic Acid
  • Akt1 protein, rat
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • Glucose