Trees are effective in the capture of particles from urban air to the extent that they can significantly improve urban air quality. As a result of their aerodynamic properties conifers, with their smaller leaves and more complex shoot structures, have been shown to capture larger amounts of particle matter than broadleaved trees. This study focuses on the effects of particle size on the deposition velocity of particles (Vg) to five urban tree species (coniferous and broadleaved) measured at two field sites, one urban and polluted and a second more rural. The larger uptake to conifers is confirmed, and for broadleaves and conifers Vg values are shown to be greater for ultra-fine particles (Dp < 1.0 microm) than for fine and coarse particles. This is important since finer particles are more likely to be deposited deep in the alveoli of the human lung causing adverse health effects. The finer particle fraction is also shown to be transported further from the emission source; in this study a busy urban road. In further sets of data the aqueous soluble and insoluble fractions of the ultra-fines were separated, indicating that aqueous insoluble particles made up only a small proportion of the ultra-fines. Much of the ultra-fine fraction is present as aerosol. Chemical analysis of the aqueous soluble fractions of coarse, fine and ultra-fine particles showed the importance of nitrates, chloride and phosphates in all three size categories at the polluted and more rural location.