Mouse models of social dysfunction, designed to investigate the complex genetics of social behaviors, require an objective methodology for scoring social interactions relevant to human disease symptoms. Here we describe an automated, three chambered apparatus designed to monitor social interaction in the mouse. Time spent in each chamber and the number of entries are scored automatically by a system detecting photocell beam breaks. When tested with the automated equipment, juvenile male C57BL/6J mice spent more time in a chamber containing a stranger mouse than in an empty chamber (sociability), similar to results obtained by the observer scored method. In addition, automated scoring detected a preference to spend more time with an unfamiliar stranger than a more familiar conspecific (preference for social novelty), similar to results obtained by the observer scored method. Sniffing directed at the wire cage containing the stranger mouse correlated significantly with time spent in that chamber, indicating that duration in a chamber represents true social approach behavior. Number of entries between chambers did not correlate with duration of time spent in the chambers; entries instead proved a useful control measure of general activity. The most significant social approach behavior took place in the first five minutes of both the sociability and preference for social novelty tests. Application of these methods to C57BL/6J, DBA/2J and FVB/NJ adult males revealed that all three strains displayed tendencies for sociability and preference for social novelty. To evaluate the importance of the strain of the stranger mouse on sociability and preference for social novelty, C57BL/6J subject mice were tested either with A/J strangers or with C57BL/6J strangers. Sociability and preference for social novelty were similar with both stranger strains. The automated equipment provides an accurate and objective approach to measuring social tendencies in mice. Its use may allow higher-throughput scoring of mouse social behaviors in mouse models of social dysfunction.