Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1

J Biol Chem. 2004 Nov 12;279(46):48205-13. doi: 10.1074/jbc.M407845200. Epub 2004 Aug 29.

Abstract

The R2R3 MYB transcription factor C1 requires the basic helix-loop-helix factor R as an essential co-activator for the transcription of maize anthocyanin genes. In contrast, the R2R3 MYB protein P1 activates a subset of the C1-regulated genes independently of R. Substitution of six amino acids in P1 with the C1 amino acids results in P1(*), whose activity on C1-regulated and P1-regulated genes is R-dependent or R-enhanced, respectively. We have used P1(*) in combination with various promoters to uncover two mechanisms for R function. On synthetic promoters that contain only C1/P1 binding sites, R is an essential co-activator of C1. This function of R is unlikely to simply be the result of an increase in the C1 DNA-binding affinity, since transcriptional activity of a C1 mutant that binds DNA at a higher affinity, comparable with P1, remains R-dependent. The differential transcriptional activity of C1 fusions with the yeast Gal4 DNA-binding domain in yeast and maize cells suggests that part of the function of R is to relieve C1 from a plant-specific inhibitor. A second function of R requires cis-regulatory elements in addition to the C1/P1 DNA-binding sites for R-enhanced transcription of a1. We hypothesize that R functions in this mode by binding or recruiting additional factors to the anthocyanin regulatory element conserved in the promoters of several anthocyanin genes. Together, these findings suggest a model in which combinatorial interactions with co-activators enable R2R3 MYB factors with very similar DNA binding preferences to discriminate between target genes in vivo.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Arabidopsis / genetics
  • Arabidopsis / metabolism
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism
  • Flavonoids / biosynthesis
  • Gene Expression Regulation, Plant*
  • Helix-Loop-Helix Motifs*
  • Molecular Sequence Data
  • Promoter Regions, Genetic
  • Protein Binding
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism
  • Sequence Alignment
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • Two-Hybrid System Techniques

Substances

  • Arabidopsis Proteins
  • BOTRYTIS SUSCEPTIBLE1 protein, Arabidopsis
  • DNA-Binding Proteins
  • Flavonoids
  • Recombinant Fusion Proteins
  • Transcription Factors