Impaired cardiopulmonary response to exercise in moderate hypertension

Can J Cardiol. 1992 May;8(4):363-71.


Objective: To identify the limiting factors of exercise performance in subjects with hypertension associated with left ventricular hypertrophy. The secondary objective was to establish relationship between peripheral function and exercise capacity.

Design: Cardiopulmonary exercise testing was conducted using two protocols: a graded exercise test to maximal effort established maximal exercise capacity, followed by a step-incremental test combining gas-exchange measures and radionuclide angiography. The exercise responses were compared within and between groups.

Setting: All hypertensive subjects were selected from the Toronto Tri-Hospital Hypertension Clinic. Normal subjects were recruited from the surrounding community.

Patients: Twelve patients with established hypertension and left ventricular hypertrophy (determined by echocardiography) were studied as a referred/volunteer sample. All had no evidence of coincident diseases and were unmedicated at time of testing. A volunteer sample of normal, healthy subjects acted as a control.

Interventions: Graded exercise to maximum and step-incremental (submaximal and steady-state) exercise was used to quantify cardiopulmonary function during exercise stress.

Main outcome measures: These included (for exercise performance) maximal oxygen intake (VO2max), the ventilatory anaerobic threshold, total peripheral resistance and blood lactate. Cardiac function measures included ejection fraction and ventricular volumes.

Results: Cardiac function data obtained during exercise in hypertensive subjects included an increase in the pressure to volume ratio, but a blunted ejection fraction response at peak exercise (P less than 0.05). Although end-diastolic volume increased during exercise (P less than 0.05), values were lower during both levels of exercise compared with normal subjects. Mean +/- SD end-systolic volume increased from 39 +/- 22 at rest to 42 +/- 23 mL during peak exercise. Hypertensive subjects had a lower VO2 max (mean 27.4 +/- 4.8 mL/kg/min) compared with normals (40.0 +/- 8.5 mL/kg/min) and a lower ventilatory anaerobic threshold (14.4 +/- 2.9 versus 27.6 +/- 5.8 mL/kg/min, P less than 0.005). Furthermore, hypertensive patients had a significantly elevated total peripheral resistance at rest (2.5 +/- 1.0 versus 1.8 +/- 0.4 peripheral resistance units) and at peak exercise (1.6 +/- 0.7 versus 0.8 +/- 0.2, P less than 0.01) compared with normal subjects (P less than 0.05). A correlation coefficient of 0.92 was found between total peripheral resistance and VO2 max in hypertensive subjects (P less than 0.01).

Conclusions: These data suggest that peripheral factors, specifically a failure to reduce significantly total peripheral resistance, limits exercise performance despite a maintenance of left ventricular function during exercise in patients with moderate hypertension. The use of cardiopulmonary exercise testing can help in identifying the underlying cause of exercise intolerance in this population and limited left ventricular reserve at peak exercise, and may offer a sensitive measure of therapeutic end-points.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Cardiomegaly / blood
  • Cardiomegaly / complications
  • Cardiomegaly / physiopathology*
  • Exercise / physiology*
  • Exercise Test
  • Female
  • Hemodynamics / physiology*
  • Humans
  • Hypertension / blood
  • Hypertension / complications
  • Hypertension / physiopathology*
  • Lactates / blood
  • Lactic Acid
  • Male
  • Middle Aged
  • Oxygen Consumption
  • Ventricular Function, Left / physiology


  • Lactates
  • Lactic Acid