Carnitine: a nutritional, biosynthetic, and functional perspective

Mol Aspects Med. 2004 Oct-Dec;25(5-6):455-73. doi: 10.1016/j.mam.2004.06.006.


Carnitine status in humans is reported to vary according to body composition, gender, and diet. Plasma carnitine concentration positively correlates with the dietary intake of carnitine. The content of carnitine in foodstuff is based on old and inadequate methodology. Nevertheless, dietary carnitine is important. The molecular biology of the enzymes of carnitine biosynthesis has recently been accomplished. Carnitine biosynthesis requires pathways in different tissues and is an efficient system. Overall biosynthesis is determined by the availability of trimethyllysine from tissue proteins. Carnitine deficiency resulting from a defect in biosynthesis has yet to be reported. The role of carnitine in long-chain fatty acid oxidation is well defined. Recent evidence supports a role for the voltage-dependent anion channel in the transport of acyl-CoAs through the mitochondrial outer membrane. The mitochondrial outer membrane carnitine palmitoyltransferase-I in liver can be phosphorylated and when phosphorylated the sensitivity to malonyl-CoA is greatly decreased. This may explain the change in sensitivity of liver carnitine palmitoyltransferase-I observed during fasting and diabetes. Recently reported data clarify the role of carnitine and the carnitine transport system in the interplay between peroxisomes and mitochondrial fatty acid oxidation. Lastly, the buffering of the acyl-CoA/CoA coupled by carnitine reflects intracellular metabolism. This mass action effect underlies the use of carnitine as a therapeutic agent. In summary, these new observations help to further our understanding of the molecular aspects of carnitine in medicine.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Acyl Coenzyme A / metabolism
  • Animals
  • Carnitine / administration & dosage
  • Carnitine / metabolism*
  • Carnitine / pharmacology*
  • Fatty Acids / metabolism
  • Humans
  • Mitochondria / metabolism
  • Nutritional Physiological Phenomena*


  • Acyl Coenzyme A
  • Fatty Acids
  • Carnitine