Mechanical properties of human tracheal cartilage

J Appl Physiol (1985). 1992 Jan;72(1):219-25. doi: 10.1152/jappl.1992.72.1.219.


Biomechanical changes in airway cartilage could influence the mechanics of maximal expiratory flow and cough and the degree of shortening of activated airway smooth muscle. We examined the tensile stiffness of small samples of human tracheal cartilage rings in specimens obtained at autopsy from 10 individuals who ranged in age from 17 to 81 yr. The tensile properties of the cartilage were compared with its content of water (%water), glycosaminoglycans (chondroitin sulfate equivalents, mg/mg dry wt), and hydroxyproline content (mg hydroxyproline/mg dry weight). The average values for tensile stiffness ranged between 1 and 15 MPa and increased significantly with increasing age [tensile stiffness = 0.19 x (age in yr) + 2.02; r = 0.83, P less than 0.05]. The outermost layer of cartilage was the most stiff in all individuals, and the deeper layers were progressively less stiff. Water content and hydroxyproline content both decreased with increasing age. Thus tensile stiffness correlated inversely with water content and hydroxyproline content [tensile stiffness = -0.83 x (%water) + 16.4; r = 0.82, P less than .05 and tensile stiffness = -342 x (hydroxyproline content) + 25; r = 0.87, P less than 0.05]. Total tissue content of glycosaminoglycans did not change with age, although changes in glycosaminoglycan type and proteoglycan structure with increasing age have been described. We conclude that there are age-related changes in the biomechanical properties and biochemical composition of airway cartilage that could influence airway dynamics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Aging / physiology
  • Biomechanical Phenomena
  • Body Water / metabolism
  • Cartilage / physiology*
  • Female
  • Glycosaminoglycans / metabolism
  • Humans
  • Hydroxyproline / metabolism
  • In Vitro Techniques
  • Male
  • Middle Aged
  • Respiratory Mechanics / physiology*
  • Tensile Strength
  • Trachea / physiology*


  • Glycosaminoglycans
  • Hydroxyproline