Synergistic operation of four cis-acting elements mediate high level DAL5 transcription in Saccharomyces cerevisiae

FEMS Yeast Res. 2004 Oct;5(1):29-41. doi: 10.1016/j.femsyr.2004.06.004.

Abstract

The Saccharomyces cerevisiae allantoate/ureidosuccinate permease gene (DAL5) is often used as a reporter in studies of the Tor1/2 protein kinases which are specifically inhibited by the clinically important immunosuppressant and anti-neoplastic drug, rapamycin. To date, only a single type of cis-acting element has been shown to be required for DAL5 expression, two copies of the GATAA-containing UAS(NTR) element that mediates nitrogen catabolite repression-sensitive transcription. UAS(NTR) is the binding site for the transcriptional activator, Gln3 whose intracellular localization responds to the nitrogen supply, accumulating in the nuclei of cells provided with poor nitrogen sources and in the cytoplasm when excess nitrogen is available. Recent data raised the possibility that DAL5 might also be regulated by the retrograde system responsible for control of early TCA cycle gene expression, prompting us to investigate the structure of the DAL5 promoter in more detail. Here, we show that clearly one (UAS(B)), and possibly two (UAS(A)), additional cis-acting elements are required for full DAL5 expression. One of these elements (UAS(B)) is in a region that is heavily protected from DNaseI digestion and functions in a highly synergistic manner with the two UAS(NTR) elements. Cis-acting elements UAS(NTR)-UAS(A) and UAS(NTR)-UAS(B) are situated on the same face of the DNA two and one turn apart, respectively. We also found that decreased DAL5 expression in glutamate-grown cells, a characteristic shared with retrograde regulation, likely derives from decreased nuclear Gln3 levels that occur under these growth conditions rather than direct retrograde system control.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • DNA Footprinting
  • DNA, Fungal / genetics
  • DNA, Fungal / metabolism
  • Electrophoretic Mobility Shift Assay
  • Gene Expression Regulation, Enzymologic / physiology
  • Gene Expression Regulation, Fungal / physiology
  • Membrane Transport Proteins / biosynthesis
  • Membrane Transport Proteins / genetics*
  • Molecular Sequence Data
  • Plasmids / genetics
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Regulatory Sequences, Nucleic Acid / genetics
  • Regulatory Sequences, Nucleic Acid / physiology*
  • Saccharomyces cerevisiae / enzymology*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae Proteins / biosynthesis*
  • Saccharomyces cerevisiae Proteins / genetics
  • Transcription, Genetic / genetics
  • beta-Galactosidase / metabolism

Substances

  • DAL4 protein, S cerevisiae
  • DAL5 protein, S cerevisiae
  • DNA, Fungal
  • Membrane Transport Proteins
  • Recombinant Proteins
  • Saccharomyces cerevisiae Proteins
  • beta-Galactosidase