Active zones are highly specialized sites for release of neurotransmitter from presynaptic nerve terminals. The architecture of the active zone is exquisitely designed to facilitate the regulated tethering, docking, and fusing of the synaptic vesicles with the plasma membrane. Here we present our view of the structural and molecular organization of active zones across species and propose that all active zones are organized according to a common principle in which the structural differences correlate with the kinetics of transmitter release.