Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Oct;137(2):321-8.
doi: 10.1016/j.molbiopara.2004.06.011.

Constitutive differences in Cu/Zn superoxide dismutase mRNA levels and activity in hemocytes of Biomphalaria glabrata (Mollusca) that are either susceptible or resistant to Schistosoma mansoni (Trematoda)

Affiliations

Constitutive differences in Cu/Zn superoxide dismutase mRNA levels and activity in hemocytes of Biomphalaria glabrata (Mollusca) that are either susceptible or resistant to Schistosoma mansoni (Trematoda)

Cheri P Goodall et al. Mol Biochem Parasitol. 2004 Oct.

Abstract

Genetic strains of the snail Biomphalaria glabrata vary in their resistance to the parasite Schistosoma mansoni. Phagocytic cells (hemocytes) circulating in the hemolymph of B. glabrata play an essential role in the snail's innate immune response. Hemocytes of resistant B. glabrata kill S. mansoni in vitro via a mechanism which involves a respiratory burst. Reactive oxygen species (ROS), which are products of the respiratory burst, can act as mediators of both oxidative damage and of immune-related intracellular signaling pathways. One specific ROS, hydrogen peroxide (H2O2), has been shown to be involved in hemocyte-mediated sporocyst killing. We tested the hypothesis that Cu/Zn superoxide dismutase (SOD), a cytosolic enzyme that catalyzes the conversion of superoxide anion to H2O2, is somehow different between resistant and susceptible snail strains. We report a hemocyte transcript with all the features of a typical cytosolic Cu/Zn SOD (GenBank accession numbers AY505496 and AY505497). The amount of Cu/Zn SOD mRNA in hemocytes from resistant snails was double that of hemocytes from susceptible snails, and this correlated directly with an increased Cu/Zn SOD enzymatic activity in resistant hemocytes. Additional experiments determined that in vitro interaction/encapsulation of sporocysts did not influence Cu/Zn SOD mRNA levels in hemocytes from either snail strain. Thus, resistance in this host-parasite system does not appear to depend on a transcriptional response of hemocyte Cu/Zn SOD, but may be due, at least in part, to a constitutively elevated enzymatic level of Cu/Zn SOD.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources