A bank of 892 autoimmune sera was screened by indirect immunofluorescence on mammalian cells. Six sera were identified that recognize an antigen(s) with a cell cycle-dependent localization pattern. In interphase cells, the antibodies stained the nucleus and in mitotic cells the spindle apparatus was recognized. Immunological criteria indicate that the antigen recognized by at least one of these sera corresponds to a previously identified protein called the nuclear mitotic apparatus protein (NuMA). A cDNA which partially encodes NuMA was cloned from a lambda gt11 human placental cDNA expression library, and overlapping cDNA clones that encode the entire gene were isolated. DNA sequence analysis of the clones has identified a long open reading frame capable of encoding a protein of 238 kD. Analysis of the predicted protein sequence suggests that NuMA contains an unusually large central alpha-helical domain of 1,485 amino acids flanked by nonhelical terminal domains. The central domain is similar to coiled-coil regions in structural proteins such as myosin heavy chains, cytokeratins, and nuclear lamins which are capable of forming filaments. Double immunofluorescence experiments performed with anti-NuMA and antilamin antibodies indicate that NuMA dissociates from condensing chromosomes during early prophase, before the complete disintegration of the nuclear lamina. As mitosis progresses, NuMA reassociates with telophase chromosomes very early during nuclear reformation, before substantial accumulation of lamins on chromosomal surfaces is evident. These results indicate that the NuMA proteins may be a structural component of the nucleus and may be involved in the early steps of nuclear reformation during telophase.