Heart-type fatty acid-binding protein reciprocally regulates glucose and fatty acid utilization during exercise

Am J Physiol Endocrinol Metab. 2005 Feb;288(2):E292-7. doi: 10.1152/ajpendo.00287.2004. Epub 2004 Sep 28.

Abstract

The role of heart-type cytosolic fatty acid-binding protein (H-FABP) in mediating whole body and muscle-specific long-chain fatty acid (LCFA) and glucose utilization was examined using exercise as a phenotyping tool. Catheters were chronically implanted in a carotid artery and jugular vein of wild-type (WT, n = 8), heterozygous (H-FABP(+/-), n = 8), and null (H-FABP(-/-), n = 7) chow-fed C57BL/6J mice, and mice were allowed to recover for 7 days. After a 5-h fast, conscious, unrestrained mice were studied during 30 min of treadmill exercise (0.6 mph). A bolus of [(125)I]-15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid and 2-deoxy-[(3)H]glucose was administered to obtain rates of whole body metabolic clearance (MCR) and indexes of muscle LCFA (R(f)) and glucose (R(g)) utilization. Fasting, nonesterified fatty acids (mM) were elevated in H-FABP(-/-) mice (2.2 +/- 0.9 vs. 1.3 +/- 0.1 and 1.3 +/- 0.2 for WT and H-FABP(+/-)). During exercise, blood glucose (mM) increased in WT (11.7 +/- 0.8) and H-FABP(+/-) (12.6 +/- 0.9) mice, whereas H-FABP(-/-) mice developed overt hypoglycemia (4.8 +/- 0.8). Examination of tissue-specific and whole body glucose and LCFA utilization demonstrated a dependency on H-FABP with exercise in all tissues examined. Reductions in H-FABP led to decreasing exercise-stimulated R(f) and increasing R(g) with the most pronounced effects in heart and soleus muscle. Similar results were seen for MCR with decreasing LCFA and increasing glucose clearance with declining levels of H-FABP. These results show that, in vivo, H-FABP has reciprocal effects on glucose and LCFA utilization and whole body fuel homeostasis when metabolic demands are elevated by exercise.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blood Glucose / metabolism*
  • Carrier Proteins / metabolism*
  • Fatty Acid-Binding Proteins
  • Fatty Acids / blood*
  • Homeostasis / physiology
  • Metabolic Clearance Rate
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Muscle, Skeletal / physiology*
  • Physical Conditioning, Animal / physiology*
  • Physical Exertion / physiology*

Substances

  • Blood Glucose
  • Carrier Proteins
  • Fatty Acid-Binding Proteins
  • Fatty Acids