[The role of nutritional factors on the structure and function of the brain: an update on dietary requirements]

Rev Neurol (Paris). 2004 Sep;160(8-9):767-92. doi: 10.1016/s0035-3787(04)71032-2.
[Article in French]


The brain is an organ elaborated and functioning from substances present in the diet. Dietary regulation of blood glucose level (via ingestion of food with a low glycemic index ensuring a low insulin level) improves the quality and duration of intellectual performance, if only because at rest the adult brain consumes 50 p. 100 of dietary carbohydrates, 80 p. 100 of them for energy purposes. The nature of the amino acid composition of dietary proteins contributes to good cerebral function; tryptophan plays a special role. Many indispensable amino acids present in dietary proteins help to elaborate neurotransmitters and neuromodulators. Omega-3 fatty acids provided the first coherent experimental demonstration of the effect of dietary nutrients on the structure and function of the brain. First it was shown that the differentiation and functioning of cultured brain cells requires omega-3 fatty acids. It was then demonstrated that alpha-linolenic acid (ALA) deficiency alters the course of brain development, perturbs the composition and physicochemical properties of brain cell membranes, neurones, oligodendrocytes, and astrocytes (ALA). This leads to physicochemical modifications, induces biochemical and physiological perturbations, and results in neurosensory and behavioral upset. Consequently, the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for infants (premature and term) conditions the visual and cerebral abilities, including intellectual abilities. Moreover, dietary omega-3 fatty acids are certainly involved in the prevention of some aspects of cardiovascular disease (including at the level of cerebral vascularization), and in some neuropsychiatric disorders, particularly depression, as well as in dementia, notably Alzheimer's disease. Their deficiency can prevent the satisfactory renewal of membranes and thus accelerate cerebral aging. Iron is necessary to ensure oxygenation, to produce energy in the cerebral parenchyma, and for the synthesis of neurotransmitters. The iodine provided by the thyroid hormone ensures the energy metabolism of the cerebral cells. The absence of iodine during pregnancy induces severe cerebral dysfunction, leading to cretinism. Manganese, copper, and zinc participate in enzymatic mechanisms that protect against free radicals, toxic derivatives of oxygen. The use of glucose by nervous tissue implies the presence of vitamin B1. Vitamin B9 preserves memory during aging, and with vitamin B12 delays the onset of signs of dementia, provided it is administered in a precise clinical window, at the onset of the first symptoms. Vitamins B6 and B12, among others, are directly involved in the synthesis of neurotransmitters. Nerve endings contain the highest concentrations of vitamin C in the human body. Among various vitamin E components, only alpha-tocopherol is involved in nervous membranes. The objective of this update is to give an overview of the effects of dietary nutrients on the structure and certain functions of the brain.

Publication types

  • English Abstract
  • Review

MeSH terms

  • Brain / metabolism*
  • Brain / physiology
  • Energy Metabolism
  • Fatty Acids, Omega-3 / metabolism
  • Female
  • Glucose / metabolism
  • Humans
  • Infant, Newborn
  • Male
  • Mental Disorders / etiology
  • Minerals / metabolism
  • Nutritional Requirements*
  • Vitamins / metabolism


  • Fatty Acids, Omega-3
  • Minerals
  • Vitamins
  • Glucose