Visible Human 2.0--the next generation

Stud Health Technol Inform. 2003;94:275-81.


The National Library of Medicine has initiated the development of new anatomical methods and techniques for the acquisition of higher resolution data sets, aiming to address the anatomical artifacts encountered in the development of the Visible Human Male and Female and to insure enhanced detection of structures, providing data in greater depth and breadth. Given this framework, we acquired a complete data set of the head and neck. CT and MR scans were also obtained with registration hardware inserted prior to imaging. The arterial and venous systems were injected with colorized araldite-F. After freezing, axial cryosectioning and digital photography at 147 microns/voxel resolution was performed. Two slabs of the specimen were acquired with a special tissue harvesting technique. The resulting tissue slices of the whole specimen were stained for different tissue types. The resulting histological material was then scanned at a 60x magnification using the Virtual Slice technology at 2 microns/pixel resolution (each slide approximately 75,000 x 100,000 pixels). In this data set, for the first time anatomy is presented as a continuum from a radiologic granularity of 1 mm/voxel, to a macroscopic resolution of .147 mm/voxel, to microscopic resolution of 2 microns/pixel. The hiatus between gross anatomy and histology has been assumed insurmountable, and until the present time this gap was bridged by extrapolating findings on minute samples. The availability of anatomical data with the fidelity presented will render it possible to perform a seamless study of whole organs at a cellular level and provide a testbed for the validation of histological estimation techniques. A future complete Visible Human created from data acquired at a cellular resolution, aside from its daunting size, will open new possibilities in multiple directions in medical research and simulation.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Computer Simulation*
  • Female
  • Human Body*
  • Humans
  • Male
  • National Library of Medicine (U.S.)
  • Software
  • United States