Assigning African elephant DNA to geographic region of origin: applications to the ivory trade

Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14847-52. doi: 10.1073/pnas.0403170101. Epub 2004 Sep 30.


Resurgence of illicit trade in African elephant ivory is placing the elephant at renewed risk. Regulation of this trade could be vastly improved by the ability to verify the geographic origin of tusks. We address this need by developing a combined genetic and statistical method to determine the origin of poached ivory. Our statistical approach exploits a smoothing method to estimate geographic-specific allele frequencies over the entire African elephants' range for 16 microsatellite loci, using 315 tissue and 84 scat samples from forest (Loxodonta africana cyclotis) and savannah (Loxodonta africana africana) elephants at 28 locations. These geographic-specific allele frequency estimates are used to infer the geographic origin of DNA samples, such as could be obtained from tusks of unknown origin. We demonstrate that our method alleviates several problems associated with standard assignment methods in this context, and the absolute accuracy of our method is high. Continent-wide, 50% of samples were located within 500 km, and 80% within 932 km of their actual place of origin. Accuracy varied by region (median accuracies: West Africa, 135 km; Central Savannah, 286 km; Central Forest, 411 km; South, 535 km; and East, 697 km). In some cases, allele frequencies vary considerably over small geographic regions, making much finer discriminations possible and suggesting that resolution could be further improved by collection of samples from locations not represented in our study.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Africa
  • Animals
  • DNA / genetics*
  • Dentin / chemistry*
  • Elephants / genetics*
  • Geography
  • Microsatellite Repeats


  • DNA