Source apportionment of indoor, outdoor, and personal PM2.5 in Seattle, Washington, using positive matrix factorization

J Air Waste Manag Assoc. 2004 Sep;54(9):1175-87. doi: 10.1080/10473289.2004.10470976.

Abstract

As part of a large exposure assessment and health-effects panel study, 33 trace elements and light-absorbing carbon were measured on 24-hr fixed-site filter samples for particulate matter with an aerodynamic diameter <2.5 microm (PM2.5) collected between September 26, 2000, and May 25, 2001, at a central outdoor site, immediately outside each subject's residence, inside each residence, and on each subject (personal sample). Both two-way (PMF2) and three-way (PMF3) positive matrix factorization were used to deduce the sources contributing to PM2.5. Five sources contributing to the indoor and outdoor samples were identified: vegetative burning, mobile emissions, secondary sulfate, a source rich in chlorine, and a source of crustal-derived material. Vegetative burning contributed more PM2.5 mass on average than any other source in all microenvironments, with average values estimated by PMF2 and PMF3, respectively, of 7.6 and 8.7 microg/m3 for the outdoor samples, 4 and 5.3 microg/m3 for the indoor samples, and 3.8 and 3.4 microg/m3 for the personal samples. Personal exposure to the combustion-related particles was correlated with outdoor sources, whereas exposure to the crustal and chlorine-rich particles was not. Personal exposures to crustal sources were strongly associated with personal activities, especially time spent at school among the child subjects.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Air Pollutants / analysis*
  • Air Pollution, Indoor / analysis*
  • Environmental Exposure*
  • Humans
  • Models, Theoretical*
  • Particle Size
  • Washington

Substances

  • Air Pollutants