Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 281 (1), 1148-56

Evolution of Somatosensory and Motor Cortex in Primates


Evolution of Somatosensory and Motor Cortex in Primates

Jon H Kaas. Anat Rec A Discov Mol Cell Evol Biol.


Inferences about how the complex somatosensory systems of anthropoid primates evolved are based on comparative studies of such systems in extant mammals. Experimental studies of members of the major clades of extant mammals suggest that somatosensory cortex of early mammals consisted of only a few areas, including a primary area, S1, bordered by strip-like rostral and caudal somatosensory fields, SR and SC. In addition, the second somatosensory area, S2, and the parietal ventral area, PV, were probably present. S1, S2, and PV were activated independently via parallel projections from the ventroposterior nucleus, VP. Little posterior parietal cortex existed, and it was unlikely that a separate primary motor area, M1, existed until placental mammals evolved. Early primates retained this basic organization and also had a larger posterior parietal region that mediated sensorimotor functions via connections with motor and premotor areas. The frontal cortex included M1, dorsal and ventral premotor areas, supplementary motor area, and cingulate motor fields. Ventroposterior superior and ventroposterior inferior nuclei were distinct from the ventroposterior nucleus in the thalamus. In early anthropoid primates, areas S1, SR, and SC had differentiated into the fields now recognized as areas 3b, 3a, and 1. Areas 3b and 1 contained parallel mirror-image representations of cutaneous receptors and a parallel representation in area 2 was probable. Serial processing became dominant, so that neurons in areas 1, S2, and PV became dependent on area 3b for activation. Posterior parietal cortex expanded into more areas that related to frontal cortex. Less is known about changes that might have occurred with the emergence of apes and humans, but their brains were larger and posed scaling problems most likely solved by increasing the number of cortical areas and reducing the proportion of long connections.

Similar articles

See all similar articles

Cited by 50 PubMed Central articles

See all "Cited by" articles

LinkOut - more resources