Behavioral studies suggest that making a decision involves representing the overall desirability of all available actions and then selecting that action that is most desirable. Physiological studies have proposed that neurons in the parietal cortex play a role in selecting movements for execution. To test the hypothesis that these parietal neurons encode the subjective desirability of making particular movements, we exploited Nash's game theoretic equilibrium, during which the subjective desirability of multiple actions should be equal for human players. Behavior measured during a strategic game suggests that monkeys' choices, like those of humans, are guided by subjective desirability. Under these conditions, activity in the parietal cortex was correlated with the relative subjective desirability of actions irrespective of the specific combination of reward magnitude, reward probability, and response probability associated with each action. These observations may help place many recent findings regarding the posterior parietal cortex into a common conceptual framework.