Cytochrome bd is a prokaryotic terminal oxidase catalyzing O2 reduction to H2O. The oxygen-reducing site has been proposed to contain two hemes, d and b595, the latter presumably replacing functionally CuB of heme-copper oxidases. We show that NO, in competition with O2, rapidly and potently (Ki = 100 +/- 34 nM at approximately 70 microM O2) inhibits cytochrome bd isolated from Escherichia coli and Azotobacter vinelandii in turnover, inhibition being quickly and fully reverted upon NO depletion. Under anaerobic reducing conditions, neither of the two enzymes reveals NO reductase activity, which is proposed to be associated with CuB in heme-copper oxidases.
Copyright 2004 Federation of European Biochemical Societies