Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 10 (19), 6732-43

Inhibition of the Type III Epidermal Growth Factor Receptor Variant Mutant Receptor by Dominant-Negative EGFR-CD533 Enhances Malignant Glioma Cell Radiosensitivity

Affiliations

Inhibition of the Type III Epidermal Growth Factor Receptor Variant Mutant Receptor by Dominant-Negative EGFR-CD533 Enhances Malignant Glioma Cell Radiosensitivity

Guido Lammering et al. Clin Cancer Res.

Abstract

Purpose: The commonly expressed variant epidermal growth factor receptor (EGFR), the type III EGFR variant (EGFRvIII), functions as an oncoprotein promoting neoplastic transformation and tumorigenicity. The role of EGFRvIII in cellular responses to genotoxic stress, such as ionizing radiation, is only minimally defined. Thus, we have investigated EGFRvIII as a potential modulator of cellular radiation responses and explored the feasibility of adenovirus (Ad)-mediated expression of dominant-negative EGFR-CD533 as a gene therapeutic approach for inhibiting EGFRvIII function in vitro and in vivo.

Experimental design and results: EGFR-CD533 and EGFRvIII were expressed in vitro and in vivo in malignant U-373 MG glioma cells through transduction with an Ad vector, Ad-EGFR-CD533 and Ad-EGFRvIII, respectively. In vivo studies defined the importance of EGFRvIII as a modulator of radiation responses, demonstrating a 2.6-fold activation of EGFRvIII in U-373 malignant glioma tumors. Concomitant expression of EGFR-CD533 inhibited the radiation-induced activation of EGFRvIII in vitro and completely abolished the enhanced clonogenic survival conferred by EGFRvIII. The ability of EGFR-CD533 to inhibit EGFRvIII function was further confirmed in vivo through complete inhibition of EGFRvIII-mediated increased tumorigenicity and radiation-induced activation of EGFRvIII. Growth delay assays with U-373 xenograft tumors demonstrated that the expression of EGFR-CD533 significantly enhanced radiosensitivity of tumor cells under conditions of intrinsic and Ad-mediated EGFRvIII expression.

Conclusions: We conclude that EGFRvIII confers significant radioresistance to tumor cells through enhanced cytoprotective responses, and we have demonstrated that dominant-negative EGFR-CD533 effectively inhibits EGFRvIII function. These data affirm the broad potential of EGFR-CD533 to radiosensitize human malignant glioma cells.

Similar articles

See all similar articles

Cited by 27 PubMed Central articles

See all "Cited by" articles

Publication types

MeSH terms

Feedback