Evidence for implication of primate area V1 in neural 3-D spatial localization processing

J Physiol Paris. 2004 Jan-Jun;98(1-3):125-34. doi: 10.1016/j.jphysparis.2004.03.004.


We investigated the neural mechanisms underlying visual localization in 3-D space in area V1 of behaving monkeys. Three different sources of information, retinal disparity, viewing distance and gaze direction, that participate in these neural mechanisms are being reviewed. The way they interact with each other is studied by combining retinal and extraretinal signals. Interactions between retinal disparity and viewing distance have been shown in foveal V1; we have observed a strong modulation of the spontaneous activity and of the visual response of most V1 cells that was highly correlated with the vergence angle. As a consequence of these gain effects, neural horizontal disparity coding is favoured or refined for particular distances of fixation. Changing the gaze direction in the fronto-parallel plane also produces strong gains in the visual response of half of the cells in foveal V1. Cells tested for horizontal disparity and orientation selectivities show gain effects that occur coherently for the same spatial coordinates of the eyes. Shifts in preferred disparity also occurred in several neurons. Cells tested in calcarine V1 at retinal eccentricities larger than 10 degrees , show that horizontal disparity is encoded at least up to 20 degrees around both the horizontal and vertical meridians. At these large retinal eccentricities we found that vertical disparity is also encoded with tuning profiles similar to those of horizontal disparity coding. Combinations of horizontal and vertical disparity signals show that most cells encode both properties. In fact the expression of horizontal disparity coding depends on the vertical disparity signals that produce strong gain effects and frequent changes in peak selectivities. We conclude that the vertical disparity signal and the eye position signal serve to disambiguate the horizontal disparity signal to provide information on 3-D spatial coordinates in terms of distance, gaze direction and retinal eccentricity. We suggest that the relative weight among these different signals is the determining factor involved in the neural processing that gives information on 3-D spatial localization.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Neurons / physiology*
  • Space Perception / physiology*
  • Vision Disparity / physiology
  • Visual Cortex / physiology*