Population Differentiation in G Matrix Structure Due to Natural Selection in Rana Temporaria

Evolution. 2004 Sep;58(9):2013-20. doi: 10.1111/j.0014-3820.2004.tb00486.x.

Abstract

The additive genetic variance-covariance matrix (G) is a concept central to discussions about evolutionary change over time in a suite of traits. However, at the moment we do not know how fast G itself changes as a consequence of selection or how sensitive it is to environmental influences. We investigated possible evolutionary divergence and environmental influences on G using data from a factorial common-garden experiment where common frog (Rana temporaria) tadpoles from two divergent populations were exposed to three different environmental treatments. G-matrices were estimated using an animal model approach applied to data from a NCII breeding design. Matrix comparisons using both Flury and multivariate analysis of variance methods revealed significant differences in G matrices both between populations and between treatments within populations, the former being generally larger than the latter. Comparison of levels of population differentiation in trait means using Q(ST) indices with that observed in microsatellite markers (F(ST)) revealed that the former values generally exceeded the neutral expectation set by F(ST). Hence, the results suggest that intraspecific divergence in G matrix structure has occurred mainly due to natural selection.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Animals
  • Bayes Theorem
  • Body Weights and Measures
  • Environment*
  • Gene Frequency
  • Genetics, Population*
  • Larva / anatomy & histology
  • Microsatellite Repeats / genetics
  • Multivariate Analysis
  • Phenotype*
  • Rana temporaria / anatomy & histology
  • Rana temporaria / genetics*
  • Selection, Genetic*
  • Sweden