Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli

J Biol Chem. 2005 Jan 14;280(2):1448-56. doi: 10.1074/jbc.M410104200. Epub 2004 Nov 2.

Abstract

Bacteria possess a signal transduction system, referred to as a two-component system, for adaptation to external stimuli. Each two-component system consists of a sensor protein-histidine kinase (HK) and a response regulator (RR), together forming a signal transduction pathway via histidyl-aspartyl phospho-relay. A total of 30 sensor HKs, including as yet uncharacterized putative HKs (BaeS, BasS, CreC, CusS, HydH, RstB, YedV, and YfhK), and a total of 34 RRs, including putative RRs (BaeR, BasR, CreB, CusR, HydG, RstA, YedW, YfhA, YgeK, and YhjB), have been suggested to exist in Escherichia coli. We have purified the carboxyl-terminal catalytic domain of 27 sensor HKs and the full-length protein of all 34 RRs to apparent homogeneity. Self-phosphorylation in vitro was detected for 25 HKs. The rate of self-phosphorylation differed among HKs, whereas the level of phosphorylation was generally co-related with the phosphorylation rate. However, the phosphorylation level was low for ArcB, HydH, NarQ, and NtrB even though the reaction rate was fast, whereas the level was high for the slow phosphorylation species BasS, CheA, and CreC. By using the phosphorylated HKs, we examined trans-phosphorylation in vitro of RRs for all possible combinations. Trans-phosphorylation of presumed cognate RRs by HKs was detected, for the first time, for eight pairs, BaeS-BaeR, BasS-BasR, CreC-CreB, CusS-CusR, HydH-HydG, RstB-RstA, YedV-YedW, and YfhK-YfhA. All trans-phosphorylation took place within less than 1/2 min, but the stability of phosphorylated RRs differed, indicating the involvement of de-phosphorylation control. In addition to the trans-phosphorylation between the cognate pairs, we detected trans-phosphorylation between about 3% of non-cognate HK-RR pairs, raising the possibility that the cross-talk in signal transduction takes place between two-component systems.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Escherichia coli / enzymology
  • Escherichia coli / genetics
  • Escherichia coli / metabolism*
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism*
  • Histidine Kinase
  • Phosphorylation
  • Protein Kinases / classification
  • Protein Kinases / genetics
  • Protein Kinases / metabolism*
  • Signal Transduction / physiology*
  • Time Factors

Substances

  • Escherichia coli Proteins
  • Adenosine Triphosphate
  • Protein Kinases
  • Histidine Kinase