Aqueous-phase, palladium-catalyzed cross-coupling of aryl bromides under mild conditions, using water-soluble, sterically demanding alkylphosphines

J Org Chem. 2004 Nov 12;69(23):7919-27. doi: 10.1021/jo048910c.

Abstract

Sterically demanding, water-soluble alkylphosphines have been used in combination with various palladium salts in Suzuki, Sonogashira, and Heck couplings of aryl bromides under mild conditions in aqueous solvents. The tert-butyl-substituted ligands 2-(di-tert-butylphosphino)ethyltrimethylammonium chloride (t-Bu-Amphos) and 4-(di-tert-butylphosphino)-N,N-dimethylpiperidinium chloride (t-Bu-Pip-phos) in combination with palladium(II) salts were found to give catalysts that were significantly more active than catalysts derived from tri(3-sulfonatophenyl)phosphine trisodium (TPPTS). Suzuki couplings of unactivated aryl bromides occurred efficiently at room temperature in water/acetonitrile and water/toluene biphasic mixtures or in neat water. Notably, Suzuki couplings of hydrophilic aryl bromides gave high yields without using organic solvents for the reaction or purification. This methodology has been applied to a highly efficient synthesis of diflunisal. The catalyst derived from t-Bu-Amphos was recycled three times in Suzuki couplings in water/toluene before catalyst activity began to significantly drop. The average yield of four cycles was >80% per cycle. Heck and Sonogashira couplings were carried out under mild conditions (50 and 80 degrees C, respectively) with unactivated aryl bromides to give coupled products in high yield.