Considering Fe(II/IV) redox processes as mechanistically relevant to the catalytic hydrogenation of olefins by [PhBP iPr 3]Fe-H x species

Inorg Chem. 2004 Nov 15;43(23):7474-85. doi: 10.1021/ic0488583.

Abstract

Several coordinatively unsaturated pseudotetrahedral iron(II) precursors, [PhBP(iPr)(3)]Fe-R ([PhBP(iPr)(3)] = [PhB(CH(2)P(i)Pr(2))(3)](-); R = Me (2), R = CH(2)Ph (3), R = CH(2)CMe(3) (4)) have been prepared from [PhBP(iPr)(3)]FeCl (1) that serve as precatalysts for the room-temperature hydrogenation of unsaturated hydrocarbons (e.g., ethylene, styrene, 2-pentyne) under atmospheric H(2) pressure. The solid-state crystal structures of 2 and 3 are presented. To gain mechanistic insight into the nature of these hydrogenation reactions, a number of [PhBP(iPr)(3)]-supported iron hydrides were prepared and studied. Room-temperature hydrogenation of alkyls 2-4 in the presence of a trapping phosphine ligand affords the iron(IV) trihydride species [PhBP(iPr)(3)]Fe(H)(3)(PR(3)) (PR(3) = PMe(3) (5); PR(3) = PEt(3) (6); PR(3) = PMePh(2) (7)). These spectroscopically well-defined trihydrides undergo hydrogen loss to varying degrees in solution, and for the case of 7, this process leads to the structurally identified Fe(II) hydride product [PhBP(iPr)(3)]Fe(H)(PMePh(2)) (9). Attempts to prepare 9 by addition of LiEt(3)BH to 1 instead lead to the Fe(I) reduction product [PhBP(iPr)(3)]Fe(PMePh(2)) (10). The independent preparations of the Fe(II) monohydride complex [PhBP(iPr)(3)]Fe(II)(H)(PMe(3)) (11) and the Fe(I) phosphine adduct [PhBP(iPr)(3)]Fe(PMe(3)) (8) are described. The solid-state crystal structures of trihydride 5, monohydride 11, and 8 are compared and demonstrate relatively little structural reorganization with respect to the P(3)Fe-P' core motif as a function of the iron center's formal oxidation state. Although paramagnetic 11 (S = 1) is quantitatively converted to the diamagnetic trihydride 5 under H(2), the Fe(I) complex 8 (S = (3)/(2)) is inert toward atmospheric H(2). Complex 10 is likewise inert toward H(2). Trihydrides 5 and 6 also serve as hydrogenation precatalysts, albeit at slower rates than that for the benzyl complex 3 because of a rate-contributing phosphine dependence. That these hydrogenations appear to proceed via well-defined olefin insertion steps into an Fe-H linkage is indicated by the reaction between trihydride 5 and ethylene, which cleanly produces the ethyl complex [PhBP(iPr)(3)]Fe(CH(2)CH(3)) (13) and an equivalent of ethane. Mechanistic issues concerning the overall reaction are described.