Radiation-induced chromosomal instability and gene expression profiling: searching for clues to initiation and perpetuation

Mutat Res. 2004 Dec 2;568(1):89-96. doi: 10.1016/j.mrfmmm.2004.06.048.


Radiation-induced genomic instability (RIGI) manifests in the progeny of cells surviving ionizing radiation (IR), and can be measured using such endpoints as delayed mutation, micronuclei formation, and chromosomal instability. The frequency of RIGI is relatively high, exceeding the gene mutation rate of IR by orders of magnitude, leading to conjecture that a gene mutation is not the cause of the phenotype. We have started to explore whether differential gene expression patterns are associated with the instability phenotype, in order to shed light on its initiation and perpetuation. Using GM10115 human-hamster hybrid-derived chromosomally stable and radiation-induced unstable clones, gene expression patterns were analyzed using microarray analysis. Two methods were used to find differentially expressed genes, and all candidate genes identified by these methods were under-expressed relative to the chromosomally stable reference sample. Among this set differentially expressed genes identified were two candidates with a relationship to the ubiquitin/proteasome pathway. While follow-up gene expression analyses have confirmed the under-expression of these two genes in some of our chromosomally unstable clones, preliminary functional studies have been unable to demonstrate a link to instability. It is anticipated that as we apply this technology to the study of radiation-induced genomic instability, clues to its onset will be revealed, ultimately contributing to a greater understanding of the mechanisms of radiation carcinogenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Chromosomal Instability / genetics*
  • Clone Cells
  • Cricetinae
  • Gene Expression Profiling
  • Humans
  • Molecular Sequence Data
  • Oligonucleotide Array Sequence Analysis
  • Phenotype
  • Proteasome Endopeptidase Complex / biosynthesis*
  • RNA, Messenger / biosynthesis
  • Radiation, Ionizing
  • Ubiquitin-Conjugating Enzymes / biosynthesis*
  • Ubiquitin-Conjugating Enzymes / genetics


  • RNA, Messenger
  • UBE2A protein, human
  • Ubiquitin-Conjugating Enzymes
  • Proteasome Endopeptidase Complex
  • ATP dependent 26S protease

Associated data

  • GENBANK/AA251770
  • GENBANK/AA600173