Evolutionary impact of human Alu repetitive elements
- PMID: 15531153
- DOI: 10.1016/j.gde.2004.08.008
Evolutionary impact of human Alu repetitive elements
Abstract
Early studies of human Alu retrotransposons focused on their origin, evolution and biological properties, but current focus is shifting toward the effect of Alu elements on evolution of the human genome. Recent analyses indicate that numerous factors have affected the chromosomal distribution of Alu elements over time, including male-driven insertions, deletions and rapid CpG mutations after their retrotransposition. Unequal crossing over between Alu elements can lead to local mutations or to large segmental duplications responsible for genetic diseases and long-term evolutionary changes. Alu elements can also affect human (primate) evolution by introducing alternative splice sites in existing genes. Studying the Alu family in a human genomic context is likely to have general significance for our understanding of the evolutionary impact of other repetitive elements in diverse eukaryotic genomes.
Similar articles
-
Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity.J Mol Biol. 2001 Aug 3;311(1):17-40. doi: 10.1006/jmbi.2001.4847. J Mol Biol. 2001. PMID: 11469855
-
Recently integrated Alu elements and human genomic diversity.Mol Biol Evol. 2003 Aug;20(8):1349-61. doi: 10.1093/molbev/msg150. Epub 2003 May 30. Mol Biol Evol. 2003. PMID: 12777511
-
Effects of Alu insertions on gene function.Electrophoresis. 1998 Jun;19(8-9):1260-4. doi: 10.1002/elps.1150190806. Electrophoresis. 1998. PMID: 9694261 Review.
-
High-resolution cartography of recently integrated human chromosome 19-specific Alu fossils.J Mol Biol. 1998 Sep 4;281(5):843-56. doi: 10.1006/jmbi.1998.1984. J Mol Biol. 1998. PMID: 9719639
-
Alu repeats and human disease.Mol Genet Metab. 1999 Jul;67(3):183-93. doi: 10.1006/mgme.1999.2864. Mol Genet Metab. 1999. PMID: 10381326 Review.
Cited by 50 articles
-
The Enterprise, a massive transposon carrying Spok meiotic drive genes.Genome Res. 2021 May;31(5):789-798. doi: 10.1101/gr.267609.120. Epub 2021 Apr 19. Genome Res. 2021. PMID: 33875482 Free PMC article.
-
Human L1 Transposition Dynamics Unraveled with Functional Data Analysis.Mol Biol Evol. 2020 Dec 16;37(12):3576-3600. doi: 10.1093/molbev/msaa194. Mol Biol Evol. 2020. PMID: 32722770 Free PMC article.
-
Evolutionary Genomics of Metchnikovella incurvata (Metchnikovellidae): An Early Branching Microsporidium.Genome Biol Evol. 2018 Oct 1;10(10):2736-2748. doi: 10.1093/gbe/evy205. Genome Biol Evol. 2018. PMID: 30239727 Free PMC article.
-
Differential chromosomal organization between Saguinus midas and Saguinus bicolor with accumulation of differences the repetitive sequence DNA.Genetica. 2017 Oct;145(4-5):359-369. doi: 10.1007/s10709-017-9971-0. Epub 2017 Jun 20. Genetica. 2017. PMID: 28634866
-
A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome.Genome Biol Evol. 2016 Dec 31;8(11):3545-3558. doi: 10.1093/gbe/evw257. Genome Biol Evol. 2016. PMID: 27797956 Free PMC article.
Publication types
MeSH terms
Grant support
LinkOut - more resources
Full Text Sources
