Intracellular calcium concentration rises have been reported following activation of GABA(A) receptors in neonatal preparations and attributed to activation of voltage-dependent Ca(2+) channels. However, we show that, in cerebellar interneurons, GABA(A) agonists induce a somatodendritic Ca(2+) rise that persists at least until postnatal day 20 and is not mediated by depolarization-induced Ca(2+) entry. A local Ca(2+) elevation can likewise be elicited by repetitive stimulation of presynaptic GABAergic afferent fibers. We find that, following GABA(A) receptor activation, bicarbonate-induced Cl(-) entry leads to cell depolarization, Cl(-) accumulation, and osmotic tension. We propose that this tension induces the intracellular Ca(2+) rise as part of a regulatory volume decrease reaction. This mechanism introduces an unexpected link between activation of GABA(A) receptors and intracellular Ca(2+) elevation, which could contribute to activity-driven synaptic plasticity.