In the present investigation, we report a previously unsuspected function of the tumor suppressor protein, APC (adenomatous polyposis coli), in the regulation of base excision repair (BER). We identified a proliferating cell nuclear antigen-interacting protein-like box sequence in APC that binds DNA polymerase beta and blocks DNA polymerase beta-mediated strand-displacement synthesis in long patch BER without affecting short patch BER. We further showed that the colon cancer cell line expressing the wild-type APC gene was more sensitive to a DNA-methylating agent due to decreased DNA repair by long patch BER than the cell line expressing the mutant APC gene lacking the proliferating cell nuclear antigen-interacting protein-like box. Experiments based on RNA interference showed that the wild-type APC gene expression is required for DNA methylation-induced sensitivity of colon cancer cells. Thus, APC may play a critical role in determining utilization of long versus short patch BER pathways and affect the susceptibility of colon cancer cells to carcinogenic and chemotherapeutic agents.