Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar;288(3):C677-91.
doi: 10.1152/ajpcell.00232.2004. Epub 2004 Nov 17.

Muscle-specific interaction of caveolin isoforms: differential complex formation between caveolins in fibroblastic vs. muscle cells

Affiliations
Free article

Muscle-specific interaction of caveolin isoforms: differential complex formation between caveolins in fibroblastic vs. muscle cells

Franco Capozza et al. Am J Physiol Cell Physiol. 2005 Mar.
Free article

Abstract

It is generally well accepted that caveolin-3 expression is muscle specific, whereas caveolin-1 and -2 are coexpressed in a variety of cell types, including adipocytes, endothelial cells, epithelial cells, and fibroblasts. Caveolin-1 and -2 are known to form functional hetero-oligomeric complexes in cells where they are coexpressed, whereas caveolin-3 forms homo-oligomeric high molecular mass complexes. Although caveolin-2 might be expected to interact in a similar manner with caveolin-3, most studies indicate that this is not the case. However, this view has recently been challenged as it has been demonstrated that caveolin-2 and -3 are coexpressed in primary cultures of cardiac myocytes, where these two proteins can be coimmunoprecipitated. Thus it remains controversial whether caveolin-2 interacts with caveolin-3. Here, we directly address the issue of caveolin isoform protein-protein interactions by means of three distinct molecular genetic approaches. First, using caveolin-1-deficient mouse embryonic fibroblasts, in which we have stably expressed caveolin-1, -2, or -3, we find that caveolin-1 interacts with caveolin-2 in this setting, whereas caveolin-3 does not, in agreement with most published observations. Next, we used a transfected L6 myoblast cell system expressing all three caveolin proteins. Surprisingly, we found that caveolin-1, -2, and -3 all coimmunoprecipitate in this cell type, suggesting that this interaction is muscle cell specific. Similar results were obtained when the skeletal muscle of caveolin-1 transgenic animals was analyzed for caveolin-1 and caveolin-3 coimmunoprecipitation. Thus we conclude that all three caveolins can interact to form a discrete hetero-oligomeric complex, but that such complex formation is clearly muscle specific.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources